mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-14 14:20:45 +01:00

This CL adds a functionality that jump-starts the AEC3 shadow filter whenever it performs consistently worse than the main filter. The jump-start is done such that the shadow filter is re-initialized using the main filter coefficients. The effects of this is a significantly more accurate main linear filter which leads to less echo leakage and better transparency Bug: webrtc:9565, chromium:867873 Change-Id: Ie0b23cd536adc7ce96fc3ed2a7db112aec7437f1 Reviewed-on: https://webrtc-review.googlesource.com/90413 Reviewed-by: Sam Zackrisson <saza@webrtc.org> Commit-Queue: Per Åhgren <peah@webrtc.org> Cr-Commit-Position: refs/heads/master@{#24117}
221 lines
8.2 KiB
C++
221 lines
8.2 KiB
C++
/*
|
|
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/audio_processing/aec3/aec_state.h"
|
|
|
|
#include "modules/audio_processing/aec3/aec3_fft.h"
|
|
#include "modules/audio_processing/aec3/render_delay_buffer.h"
|
|
#include "modules/audio_processing/logging/apm_data_dumper.h"
|
|
#include "test/gtest.h"
|
|
|
|
namespace webrtc {
|
|
|
|
// Verify the general functionality of AecState
|
|
TEST(AecState, NormalUsage) {
|
|
ApmDataDumper data_dumper(42);
|
|
EchoCanceller3Config config;
|
|
AecState state(config);
|
|
absl::optional<DelayEstimate> delay_estimate =
|
|
DelayEstimate(DelayEstimate::Quality::kRefined, 10);
|
|
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
|
|
RenderDelayBuffer::Create(config, 3));
|
|
std::array<float, kFftLengthBy2Plus1> E2_main = {};
|
|
std::array<float, kFftLengthBy2Plus1> Y2 = {};
|
|
std::vector<std::vector<float>> x(3, std::vector<float>(kBlockSize, 0.f));
|
|
EchoPathVariability echo_path_variability(
|
|
false, EchoPathVariability::DelayAdjustment::kNone, false);
|
|
SubtractorOutput output;
|
|
std::array<float, kBlockSize> y;
|
|
Aec3Fft fft;
|
|
output.s_main.fill(100.f);
|
|
output.e_main.fill(100.f);
|
|
y.fill(1000.f);
|
|
|
|
std::vector<std::array<float, kFftLengthBy2Plus1>>
|
|
converged_filter_frequency_response(10);
|
|
for (auto& v : converged_filter_frequency_response) {
|
|
v.fill(0.01f);
|
|
}
|
|
std::vector<std::array<float, kFftLengthBy2Plus1>>
|
|
diverged_filter_frequency_response = converged_filter_frequency_response;
|
|
converged_filter_frequency_response[2].fill(100.f);
|
|
converged_filter_frequency_response[2][0] = 1.f;
|
|
|
|
std::vector<float> impulse_response(
|
|
GetTimeDomainLength(config.filter.main.length_blocks), 0.f);
|
|
|
|
// Verify that linear AEC usability is false when the filter is diverged.
|
|
output.UpdatePowers(y);
|
|
state.Update(delay_estimate, diverged_filter_frequency_response,
|
|
impulse_response, *render_delay_buffer->GetRenderBuffer(),
|
|
E2_main, Y2, output, y);
|
|
EXPECT_FALSE(state.UsableLinearEstimate());
|
|
|
|
// Verify that linear AEC usability is true when the filter is converged
|
|
std::fill(x[0].begin(), x[0].end(), 101.f);
|
|
for (int k = 0; k < 3000; ++k) {
|
|
render_delay_buffer->Insert(x);
|
|
output.UpdatePowers(y);
|
|
state.Update(delay_estimate, converged_filter_frequency_response,
|
|
impulse_response, *render_delay_buffer->GetRenderBuffer(),
|
|
E2_main, Y2, output, y);
|
|
}
|
|
EXPECT_TRUE(state.UsableLinearEstimate());
|
|
|
|
// Verify that linear AEC usability becomes false after an echo path change is
|
|
// reported
|
|
output.UpdatePowers(y);
|
|
state.HandleEchoPathChange(EchoPathVariability(
|
|
false, EchoPathVariability::DelayAdjustment::kBufferReadjustment, false));
|
|
state.Update(delay_estimate, converged_filter_frequency_response,
|
|
impulse_response, *render_delay_buffer->GetRenderBuffer(),
|
|
E2_main, Y2, output, y);
|
|
EXPECT_FALSE(state.UsableLinearEstimate());
|
|
|
|
// Verify that the active render detection works as intended.
|
|
std::fill(x[0].begin(), x[0].end(), 101.f);
|
|
render_delay_buffer->Insert(x);
|
|
output.UpdatePowers(y);
|
|
state.HandleEchoPathChange(EchoPathVariability(
|
|
true, EchoPathVariability::DelayAdjustment::kNewDetectedDelay, false));
|
|
state.Update(delay_estimate, converged_filter_frequency_response,
|
|
impulse_response, *render_delay_buffer->GetRenderBuffer(),
|
|
E2_main, Y2, output, y);
|
|
EXPECT_FALSE(state.ActiveRender());
|
|
|
|
for (int k = 0; k < 1000; ++k) {
|
|
render_delay_buffer->Insert(x);
|
|
output.UpdatePowers(y);
|
|
state.Update(delay_estimate, converged_filter_frequency_response,
|
|
impulse_response, *render_delay_buffer->GetRenderBuffer(),
|
|
E2_main, Y2, output, y);
|
|
}
|
|
EXPECT_TRUE(state.ActiveRender());
|
|
|
|
// Verify that the ERL is properly estimated
|
|
for (auto& x_k : x) {
|
|
x_k = std::vector<float>(kBlockSize, 0.f);
|
|
}
|
|
|
|
x[0][0] = 5000.f;
|
|
for (size_t k = 0;
|
|
k < render_delay_buffer->GetRenderBuffer()->GetFftBuffer().size(); ++k) {
|
|
render_delay_buffer->Insert(x);
|
|
if (k == 0) {
|
|
render_delay_buffer->Reset();
|
|
}
|
|
render_delay_buffer->PrepareCaptureProcessing();
|
|
}
|
|
|
|
Y2.fill(10.f * 10000.f * 10000.f);
|
|
for (size_t k = 0; k < 1000; ++k) {
|
|
output.UpdatePowers(y);
|
|
state.Update(delay_estimate, converged_filter_frequency_response,
|
|
impulse_response, *render_delay_buffer->GetRenderBuffer(),
|
|
E2_main, Y2, output, y);
|
|
}
|
|
|
|
ASSERT_TRUE(state.UsableLinearEstimate());
|
|
const std::array<float, kFftLengthBy2Plus1>& erl = state.Erl();
|
|
EXPECT_EQ(erl[0], erl[1]);
|
|
for (size_t k = 1; k < erl.size() - 1; ++k) {
|
|
EXPECT_NEAR(k % 2 == 0 ? 10.f : 1000.f, erl[k], 0.1);
|
|
}
|
|
EXPECT_EQ(erl[erl.size() - 2], erl[erl.size() - 1]);
|
|
|
|
// Verify that the ERLE is properly estimated
|
|
E2_main.fill(1.f * 10000.f * 10000.f);
|
|
Y2.fill(10.f * E2_main[0]);
|
|
for (size_t k = 0; k < 1000; ++k) {
|
|
output.UpdatePowers(y);
|
|
state.Update(delay_estimate, converged_filter_frequency_response,
|
|
impulse_response, *render_delay_buffer->GetRenderBuffer(),
|
|
E2_main, Y2, output, y);
|
|
}
|
|
ASSERT_TRUE(state.UsableLinearEstimate());
|
|
{
|
|
const auto& erle = state.Erle();
|
|
EXPECT_EQ(erle[0], erle[1]);
|
|
constexpr size_t kLowFrequencyLimit = 32;
|
|
for (size_t k = 1; k < kLowFrequencyLimit; ++k) {
|
|
EXPECT_NEAR(k % 2 == 0 ? 4.f : 1.f, erle[k], 0.1);
|
|
}
|
|
for (size_t k = kLowFrequencyLimit; k < erle.size() - 1; ++k) {
|
|
EXPECT_NEAR(k % 2 == 0 ? 1.5f : 1.f, erle[k], 0.1);
|
|
}
|
|
EXPECT_EQ(erle[erle.size() - 2], erle[erle.size() - 1]);
|
|
}
|
|
|
|
E2_main.fill(1.f * 10000.f * 10000.f);
|
|
Y2.fill(5.f * E2_main[0]);
|
|
for (size_t k = 0; k < 1000; ++k) {
|
|
output.UpdatePowers(y);
|
|
state.Update(delay_estimate, converged_filter_frequency_response,
|
|
impulse_response, *render_delay_buffer->GetRenderBuffer(),
|
|
E2_main, Y2, output, y);
|
|
}
|
|
|
|
ASSERT_TRUE(state.UsableLinearEstimate());
|
|
{
|
|
const auto& erle = state.Erle();
|
|
EXPECT_EQ(erle[0], erle[1]);
|
|
constexpr size_t kLowFrequencyLimit = 32;
|
|
for (size_t k = 1; k < kLowFrequencyLimit; ++k) {
|
|
EXPECT_NEAR(k % 2 == 0 ? 4.f : 1.f, erle[k], 0.1);
|
|
}
|
|
for (size_t k = kLowFrequencyLimit; k < erle.size() - 1; ++k) {
|
|
EXPECT_NEAR(k % 2 == 0 ? 1.5f : 1.f, erle[k], 0.1);
|
|
}
|
|
EXPECT_EQ(erle[erle.size() - 2], erle[erle.size() - 1]);
|
|
}
|
|
}
|
|
|
|
// Verifies the delay for a converged filter is correctly identified.
|
|
TEST(AecState, ConvergedFilterDelay) {
|
|
constexpr int kFilterLengthBlocks = 10;
|
|
EchoCanceller3Config config;
|
|
AecState state(config);
|
|
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
|
|
RenderDelayBuffer::Create(config, 3));
|
|
absl::optional<DelayEstimate> delay_estimate;
|
|
std::array<float, kFftLengthBy2Plus1> E2_main;
|
|
std::array<float, kFftLengthBy2Plus1> Y2;
|
|
std::array<float, kBlockSize> x;
|
|
EchoPathVariability echo_path_variability(
|
|
false, EchoPathVariability::DelayAdjustment::kNone, false);
|
|
SubtractorOutput output;
|
|
std::array<float, kBlockSize> y;
|
|
output.s_main.fill(100.f);
|
|
x.fill(0.f);
|
|
y.fill(0.f);
|
|
|
|
std::vector<std::array<float, kFftLengthBy2Plus1>> frequency_response(
|
|
kFilterLengthBlocks);
|
|
for (auto& v : frequency_response) {
|
|
v.fill(0.01f);
|
|
}
|
|
|
|
std::vector<float> impulse_response(
|
|
GetTimeDomainLength(config.filter.main.length_blocks), 0.f);
|
|
|
|
// Verify that the filter delay for a converged filter is properly identified.
|
|
for (int k = 0; k < kFilterLengthBlocks; ++k) {
|
|
std::fill(impulse_response.begin(), impulse_response.end(), 0.f);
|
|
impulse_response[k * kBlockSize + 1] = 1.f;
|
|
|
|
state.HandleEchoPathChange(echo_path_variability);
|
|
output.UpdatePowers(y);
|
|
state.Update(delay_estimate, frequency_response, impulse_response,
|
|
*render_delay_buffer->GetRenderBuffer(), E2_main, Y2, output,
|
|
y);
|
|
}
|
|
}
|
|
|
|
} // namespace webrtc
|