mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-16 07:10:38 +01:00

Usage replaced with stdint.h, rtc_base/system/arch.h and rtc_base/system/unused.h, as appropriate. Bug: webrtc:6854 Change-Id: I97225465d14b969903d92979e2df3c3c05d35f18 Reviewed-on: https://webrtc-review.googlesource.com/90249 Reviewed-by: Niklas Enbom <niklas.enbom@webrtc.org> Reviewed-by: Fredrik Solenberg <solenberg@webrtc.org> Commit-Queue: Niels Moller <nisse@webrtc.org> Cr-Commit-Position: refs/heads/master@{#24100}
633 lines
25 KiB
C++
633 lines
25 KiB
C++
|
|
/*
|
|
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/audio_processing/aec3/suppression_gain.h"
|
|
|
|
// Defines WEBRTC_ARCH_X86_FAMILY, used below.
|
|
#include "rtc_base/system/arch.h"
|
|
|
|
#if defined(WEBRTC_ARCH_X86_FAMILY)
|
|
#include <emmintrin.h>
|
|
#endif
|
|
#include <math.h>
|
|
#include <algorithm>
|
|
#include <functional>
|
|
#include <numeric>
|
|
|
|
#include "modules/audio_processing/aec3/moving_average.h"
|
|
#include "modules/audio_processing/aec3/vector_math.h"
|
|
#include "modules/audio_processing/logging/apm_data_dumper.h"
|
|
#include "rtc_base/atomicops.h"
|
|
#include "rtc_base/checks.h"
|
|
#include "system_wrappers/include/field_trial.h"
|
|
|
|
namespace webrtc {
|
|
namespace {
|
|
|
|
bool EnableTransparencyImprovements() {
|
|
return !field_trial::IsEnabled(
|
|
"WebRTC-Aec3TransparencyImprovementsKillSwitch");
|
|
}
|
|
|
|
bool EnableNewSuppression() {
|
|
return !field_trial::IsEnabled("WebRTC-Aec3NewSuppressionKillSwitch");
|
|
}
|
|
|
|
// Adjust the gains according to the presence of known external filters.
|
|
void AdjustForExternalFilters(std::array<float, kFftLengthBy2Plus1>* gain) {
|
|
// Limit the low frequency gains to avoid the impact of the high-pass filter
|
|
// on the lower-frequency gain influencing the overall achieved gain.
|
|
(*gain)[0] = (*gain)[1] = std::min((*gain)[1], (*gain)[2]);
|
|
|
|
// Limit the high frequency gains to avoid the impact of the anti-aliasing
|
|
// filter on the upper-frequency gains influencing the overall achieved
|
|
// gain. TODO(peah): Update this when new anti-aliasing filters are
|
|
// implemented.
|
|
constexpr size_t kAntiAliasingImpactLimit = (64 * 2000) / 8000;
|
|
const float min_upper_gain = (*gain)[kAntiAliasingImpactLimit];
|
|
std::for_each(
|
|
gain->begin() + kAntiAliasingImpactLimit, gain->end() - 1,
|
|
[min_upper_gain](float& a) { a = std::min(a, min_upper_gain); });
|
|
(*gain)[kFftLengthBy2] = (*gain)[kFftLengthBy2Minus1];
|
|
}
|
|
|
|
// Computes the gain to apply for the bands beyond the first band.
|
|
float UpperBandsGain(
|
|
const absl::optional<int>& narrow_peak_band,
|
|
bool saturated_echo,
|
|
const std::vector<std::vector<float>>& render,
|
|
const std::array<float, kFftLengthBy2Plus1>& low_band_gain) {
|
|
RTC_DCHECK_LT(0, render.size());
|
|
if (render.size() == 1) {
|
|
return 1.f;
|
|
}
|
|
|
|
if (narrow_peak_band &&
|
|
(*narrow_peak_band > static_cast<int>(kFftLengthBy2Plus1 - 10))) {
|
|
return 0.001f;
|
|
}
|
|
|
|
constexpr size_t kLowBandGainLimit = kFftLengthBy2 / 2;
|
|
const float gain_below_8_khz = *std::min_element(
|
|
low_band_gain.begin() + kLowBandGainLimit, low_band_gain.end());
|
|
|
|
// Always attenuate the upper bands when there is saturated echo.
|
|
if (saturated_echo) {
|
|
return std::min(0.001f, gain_below_8_khz);
|
|
}
|
|
|
|
// Compute the upper and lower band energies.
|
|
const auto sum_of_squares = [](float a, float b) { return a + b * b; };
|
|
const float low_band_energy =
|
|
std::accumulate(render[0].begin(), render[0].end(), 0.f, sum_of_squares);
|
|
float high_band_energy = 0.f;
|
|
for (size_t k = 1; k < render.size(); ++k) {
|
|
const float energy = std::accumulate(render[k].begin(), render[k].end(),
|
|
0.f, sum_of_squares);
|
|
high_band_energy = std::max(high_band_energy, energy);
|
|
}
|
|
|
|
// If there is more power in the lower frequencies than the upper frequencies,
|
|
// or if the power in upper frequencies is low, do not bound the gain in the
|
|
// upper bands.
|
|
float anti_howling_gain;
|
|
constexpr float kThreshold = kBlockSize * 10.f * 10.f / 4.f;
|
|
if (high_band_energy < std::max(low_band_energy, kThreshold)) {
|
|
anti_howling_gain = 1.f;
|
|
} else {
|
|
// In all other cases, bound the gain for upper frequencies.
|
|
RTC_DCHECK_LE(low_band_energy, high_band_energy);
|
|
RTC_DCHECK_NE(0.f, high_band_energy);
|
|
anti_howling_gain = 0.01f * sqrtf(low_band_energy / high_band_energy);
|
|
}
|
|
|
|
// Choose the gain as the minimum of the lower and upper gains.
|
|
return std::min(gain_below_8_khz, anti_howling_gain);
|
|
}
|
|
|
|
// Scales the echo according to assessed audibility at the other end.
|
|
void WeightEchoForAudibility(const EchoCanceller3Config& config,
|
|
rtc::ArrayView<const float> echo,
|
|
rtc::ArrayView<float> weighted_echo,
|
|
rtc::ArrayView<float> one_by_weighted_echo) {
|
|
RTC_DCHECK_EQ(kFftLengthBy2Plus1, echo.size());
|
|
RTC_DCHECK_EQ(kFftLengthBy2Plus1, weighted_echo.size());
|
|
RTC_DCHECK_EQ(kFftLengthBy2Plus1, one_by_weighted_echo.size());
|
|
|
|
auto weigh = [](float threshold, float normalizer, size_t begin, size_t end,
|
|
rtc::ArrayView<const float> echo,
|
|
rtc::ArrayView<float> weighted_echo,
|
|
rtc::ArrayView<float> one_by_weighted_echo) {
|
|
for (size_t k = begin; k < end; ++k) {
|
|
if (echo[k] < threshold) {
|
|
float tmp = (threshold - echo[k]) * normalizer;
|
|
weighted_echo[k] = echo[k] * std::max(0.f, 1.f - tmp * tmp);
|
|
} else {
|
|
weighted_echo[k] = echo[k];
|
|
}
|
|
one_by_weighted_echo[k] =
|
|
weighted_echo[k] > 0.f ? 1.f / weighted_echo[k] : 1.f;
|
|
}
|
|
};
|
|
|
|
float threshold = config.echo_audibility.floor_power *
|
|
config.echo_audibility.audibility_threshold_lf;
|
|
float normalizer = 1.f / (threshold - config.echo_audibility.floor_power);
|
|
weigh(threshold, normalizer, 0, 3, echo, weighted_echo, one_by_weighted_echo);
|
|
|
|
threshold = config.echo_audibility.floor_power *
|
|
config.echo_audibility.audibility_threshold_mf;
|
|
normalizer = 1.f / (threshold - config.echo_audibility.floor_power);
|
|
weigh(threshold, normalizer, 3, 7, echo, weighted_echo, one_by_weighted_echo);
|
|
|
|
threshold = config.echo_audibility.floor_power *
|
|
config.echo_audibility.audibility_threshold_hf;
|
|
normalizer = 1.f / (threshold - config.echo_audibility.floor_power);
|
|
weigh(threshold, normalizer, 7, kFftLengthBy2Plus1, echo, weighted_echo,
|
|
one_by_weighted_echo);
|
|
}
|
|
|
|
// Computes the gain to reduce the echo to a non audible level.
|
|
void GainToNoAudibleEchoFallback(
|
|
const EchoCanceller3Config& config,
|
|
bool low_noise_render,
|
|
bool saturated_echo,
|
|
bool linear_echo_estimate,
|
|
bool enable_transparency_improvements,
|
|
const std::array<float, kFftLengthBy2Plus1>& nearend,
|
|
const std::array<float, kFftLengthBy2Plus1>& weighted_echo,
|
|
const std::array<float, kFftLengthBy2Plus1>& masker,
|
|
const std::array<float, kFftLengthBy2Plus1>& min_gain,
|
|
const std::array<float, kFftLengthBy2Plus1>& max_gain,
|
|
const std::array<float, kFftLengthBy2Plus1>& one_by_weighted_echo,
|
|
std::array<float, kFftLengthBy2Plus1>* gain) {
|
|
float nearend_masking_margin = 0.f;
|
|
if (linear_echo_estimate) {
|
|
nearend_masking_margin =
|
|
low_noise_render
|
|
? config.gain_mask.m9
|
|
: (saturated_echo ? config.gain_mask.m2 : config.gain_mask.m3);
|
|
} else {
|
|
nearend_masking_margin = config.gain_mask.m7;
|
|
}
|
|
|
|
RTC_DCHECK_LE(0.f, nearend_masking_margin);
|
|
RTC_DCHECK_GT(1.f, nearend_masking_margin);
|
|
|
|
const float masker_margin =
|
|
linear_echo_estimate
|
|
? (enable_transparency_improvements ? config.gain_mask.m0
|
|
: config.gain_mask.m1)
|
|
: config.gain_mask.m8;
|
|
|
|
for (size_t k = 0; k < gain->size(); ++k) {
|
|
// TODO(devicentepena): Experiment by removing the reverberation estimation
|
|
// from the nearend signal before computing the gains.
|
|
const float unity_gain_masker = std::max(nearend[k], masker[k]);
|
|
RTC_DCHECK_LE(0.f, nearend_masking_margin * unity_gain_masker);
|
|
if (weighted_echo[k] <= nearend_masking_margin * unity_gain_masker ||
|
|
unity_gain_masker <= 0.f) {
|
|
(*gain)[k] = 1.f;
|
|
} else {
|
|
RTC_DCHECK_LT(0.f, unity_gain_masker);
|
|
(*gain)[k] =
|
|
std::max(0.f, (1.f - config.gain_mask.gain_curve_slope *
|
|
weighted_echo[k] / unity_gain_masker) *
|
|
config.gain_mask.gain_curve_offset);
|
|
(*gain)[k] = std::max(masker_margin * masker[k] * one_by_weighted_echo[k],
|
|
(*gain)[k]);
|
|
}
|
|
|
|
(*gain)[k] = std::min(std::max((*gain)[k], min_gain[k]), max_gain[k]);
|
|
}
|
|
}
|
|
|
|
// TODO(peah): Make adaptive to take the actual filter error into account.
|
|
constexpr size_t kUpperAccurateBandPlus1 = 29;
|
|
|
|
// Computes the signal output power that masks the echo signal.
|
|
void MaskingPower(const EchoCanceller3Config& config,
|
|
bool enable_transparency_improvements,
|
|
const std::array<float, kFftLengthBy2Plus1>& nearend,
|
|
const std::array<float, kFftLengthBy2Plus1>& comfort_noise,
|
|
const std::array<float, kFftLengthBy2Plus1>& last_masker,
|
|
const std::array<float, kFftLengthBy2Plus1>& gain,
|
|
std::array<float, kFftLengthBy2Plus1>* masker) {
|
|
if (enable_transparency_improvements) {
|
|
std::copy(comfort_noise.begin(), comfort_noise.end(), masker->begin());
|
|
return;
|
|
}
|
|
|
|
// Apply masking over time.
|
|
float masking_factor = config.gain_mask.temporal_masking_lf;
|
|
auto limit = config.gain_mask.temporal_masking_lf_bands;
|
|
std::transform(
|
|
comfort_noise.begin(), comfort_noise.begin() + limit, last_masker.begin(),
|
|
masker->begin(),
|
|
[masking_factor](float a, float b) { return a + masking_factor * b; });
|
|
masking_factor = config.gain_mask.temporal_masking_hf;
|
|
std::transform(
|
|
comfort_noise.begin() + limit, comfort_noise.end(),
|
|
last_masker.begin() + limit, masker->begin() + limit,
|
|
[masking_factor](float a, float b) { return a + masking_factor * b; });
|
|
|
|
// Apply masking only between lower frequency bands.
|
|
std::array<float, kFftLengthBy2Plus1> side_band_masker;
|
|
float max_nearend_after_gain = 0.f;
|
|
for (size_t k = 0; k < gain.size(); ++k) {
|
|
const float nearend_after_gain = nearend[k] * gain[k];
|
|
max_nearend_after_gain =
|
|
std::max(max_nearend_after_gain, nearend_after_gain);
|
|
side_band_masker[k] = nearend_after_gain + comfort_noise[k];
|
|
}
|
|
|
|
RTC_DCHECK_LT(kUpperAccurateBandPlus1, gain.size());
|
|
for (size_t k = 1; k < kUpperAccurateBandPlus1; ++k) {
|
|
(*masker)[k] += config.gain_mask.m5 *
|
|
(side_band_masker[k - 1] + side_band_masker[k + 1]);
|
|
}
|
|
|
|
// Add full-band masking as a minimum value for the masker.
|
|
const float min_masker = max_nearend_after_gain * config.gain_mask.m6;
|
|
std::for_each(masker->begin(), masker->end(),
|
|
[min_masker](float& a) { a = std::max(a, min_masker); });
|
|
}
|
|
|
|
// Limits the gain in the frequencies for which the adaptive filter has not
|
|
// converged. Currently, these frequencies are not hardcoded to the frequencies
|
|
// which are typically not excited by speech.
|
|
// TODO(peah): Make adaptive to take the actual filter error into account.
|
|
void AdjustNonConvergedFrequencies(
|
|
std::array<float, kFftLengthBy2Plus1>* gain) {
|
|
constexpr float oneByBandsInSum =
|
|
1 / static_cast<float>(kUpperAccurateBandPlus1 - 20);
|
|
const float hf_gain_bound =
|
|
std::accumulate(gain->begin() + 20,
|
|
gain->begin() + kUpperAccurateBandPlus1, 0.f) *
|
|
oneByBandsInSum;
|
|
|
|
std::for_each(gain->begin() + kUpperAccurateBandPlus1, gain->end(),
|
|
[hf_gain_bound](float& a) { a = std::min(a, hf_gain_bound); });
|
|
}
|
|
|
|
} // namespace
|
|
|
|
int SuppressionGain::instance_count_ = 0;
|
|
|
|
// Computes the gain to reduce the echo to a non audible level.
|
|
void SuppressionGain::GainToNoAudibleEcho(
|
|
const std::array<float, kFftLengthBy2Plus1>& nearend,
|
|
const std::array<float, kFftLengthBy2Plus1>& echo,
|
|
const std::array<float, kFftLengthBy2Plus1>& masker,
|
|
const std::array<float, kFftLengthBy2Plus1>& min_gain,
|
|
const std::array<float, kFftLengthBy2Plus1>& max_gain,
|
|
std::array<float, kFftLengthBy2Plus1>* gain) const {
|
|
for (size_t k = 0; k < gain->size(); ++k) {
|
|
float enr = echo[k] / (nearend[k] + 1.f); // Echo-to-nearend ratio.
|
|
float emr = echo[k] / (masker[k] + 1.f); // Echo-to-masker (noise) ratio.
|
|
float g = 1.0f;
|
|
if (enr > enr_transparent_[k] && emr > emr_transparent_[k]) {
|
|
g = (enr_suppress_[k] - enr) / (enr_suppress_[k] - enr_transparent_[k]);
|
|
g = std::max(g, emr_transparent_[k] / emr);
|
|
}
|
|
(*gain)[k] = std::max(std::min(g, max_gain[k]), min_gain[k]);
|
|
}
|
|
}
|
|
|
|
// TODO(peah): Add further optimizations, in particular for the divisions.
|
|
void SuppressionGain::LowerBandGain(
|
|
bool low_noise_render,
|
|
const AecState& aec_state,
|
|
const std::array<float, kFftLengthBy2Plus1>& nearend,
|
|
const std::array<float, kFftLengthBy2Plus1>& echo,
|
|
const std::array<float, kFftLengthBy2Plus1>& comfort_noise,
|
|
std::array<float, kFftLengthBy2Plus1>* gain) {
|
|
const bool saturated_echo = aec_state.SaturatedEcho();
|
|
const bool linear_echo_estimate = aec_state.UsableLinearEstimate();
|
|
|
|
// Weight echo power in terms of audibility. // Precompute 1/weighted echo
|
|
// (note that when the echo is zero, the precomputed value is never used).
|
|
std::array<float, kFftLengthBy2Plus1> weighted_echo;
|
|
std::array<float, kFftLengthBy2Plus1> one_by_weighted_echo;
|
|
WeightEchoForAudibility(config_, echo, weighted_echo, one_by_weighted_echo);
|
|
|
|
// Compute the minimum gain as the attenuating gain to put the signal just
|
|
// above the zero sample values.
|
|
std::array<float, kFftLengthBy2Plus1> min_gain;
|
|
const float min_echo_power =
|
|
low_noise_render ? config_.echo_audibility.low_render_limit
|
|
: config_.echo_audibility.normal_render_limit;
|
|
if (!saturated_echo) {
|
|
for (size_t k = 0; k < nearend.size(); ++k) {
|
|
const float denom = std::min(nearend[k], weighted_echo[k]);
|
|
min_gain[k] = denom > 0.f ? min_echo_power / denom : 1.f;
|
|
min_gain[k] = std::min(min_gain[k], 1.f);
|
|
}
|
|
if (enable_transparency_improvements_) {
|
|
for (size_t k = 0; k < 6; ++k) {
|
|
// Make sure the gains of the low frequencies do not decrease too
|
|
// quickly after strong nearend.
|
|
if (last_nearend_[k] > last_echo_[k]) {
|
|
min_gain[k] =
|
|
std::max(min_gain[k],
|
|
last_gain_[k] * config_.gain_updates.max_dec_factor_lf);
|
|
min_gain[k] = std::min(min_gain[k], 1.f);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
min_gain.fill(0.f);
|
|
}
|
|
|
|
// Compute the maximum gain by limiting the gain increase from the previous
|
|
// gain.
|
|
std::array<float, kFftLengthBy2Plus1> max_gain;
|
|
if (enable_transparency_improvements_) {
|
|
for (size_t k = 0; k < gain->size(); ++k) {
|
|
max_gain[k] =
|
|
std::min(std::max(last_gain_[k] * config_.gain_updates.max_inc_factor,
|
|
config_.gain_updates.floor_first_increase),
|
|
1.f);
|
|
}
|
|
} else {
|
|
for (size_t k = 0; k < gain->size(); ++k) {
|
|
max_gain[k] =
|
|
std::min(std::max(last_gain_[k] * gain_increase_[k],
|
|
config_.gain_updates.floor_first_increase),
|
|
1.f);
|
|
}
|
|
}
|
|
|
|
// Iteratively compute the gain required to attenuate the echo to a non
|
|
// noticeable level.
|
|
std::array<float, kFftLengthBy2Plus1> masker;
|
|
if (enable_new_suppression_) {
|
|
GainToNoAudibleEcho(nearend, weighted_echo, comfort_noise, min_gain,
|
|
max_gain, gain);
|
|
AdjustForExternalFilters(gain);
|
|
} else {
|
|
gain->fill(0.f);
|
|
for (int k = 0; k < 2; ++k) {
|
|
MaskingPower(config_, enable_transparency_improvements_, nearend,
|
|
comfort_noise, last_masker_, *gain, &masker);
|
|
GainToNoAudibleEchoFallback(
|
|
config_, low_noise_render, saturated_echo, linear_echo_estimate,
|
|
enable_transparency_improvements_, nearend, weighted_echo, masker,
|
|
min_gain, max_gain, one_by_weighted_echo, gain);
|
|
AdjustForExternalFilters(gain);
|
|
}
|
|
}
|
|
|
|
// Adjust the gain for frequencies which have not yet converged.
|
|
AdjustNonConvergedFrequencies(gain);
|
|
|
|
// Update the allowed maximum gain increase.
|
|
UpdateGainIncrease(low_noise_render, linear_echo_estimate, saturated_echo,
|
|
weighted_echo, *gain);
|
|
|
|
// Store data required for the gain computation of the next block.
|
|
std::copy(nearend.begin(), nearend.end(), last_nearend_.begin());
|
|
std::copy(weighted_echo.begin(), weighted_echo.end(), last_echo_.begin());
|
|
std::copy(gain->begin(), gain->end(), last_gain_.begin());
|
|
MaskingPower(config_, enable_transparency_improvements_, nearend,
|
|
comfort_noise, last_masker_, *gain, &last_masker_);
|
|
aec3::VectorMath(optimization_).Sqrt(*gain);
|
|
|
|
// Debug outputs for the purpose of development and analysis.
|
|
data_dumper_->DumpRaw("aec3_suppressor_min_gain", min_gain);
|
|
data_dumper_->DumpRaw("aec3_suppressor_max_gain", max_gain);
|
|
data_dumper_->DumpRaw("aec3_suppressor_masker", masker);
|
|
data_dumper_->DumpRaw("aec3_suppressor_last_masker", last_masker_);
|
|
}
|
|
|
|
SuppressionGain::SuppressionGain(const EchoCanceller3Config& config,
|
|
Aec3Optimization optimization,
|
|
int sample_rate_hz)
|
|
: data_dumper_(
|
|
new ApmDataDumper(rtc::AtomicOps::Increment(&instance_count_))),
|
|
optimization_(optimization),
|
|
config_(config),
|
|
state_change_duration_blocks_(
|
|
static_cast<int>(config_.filter.config_change_duration_blocks)),
|
|
coherence_gain_(sample_rate_hz,
|
|
config_.suppressor.bands_with_reliable_coherence),
|
|
enable_transparency_improvements_(EnableTransparencyImprovements()),
|
|
enable_new_suppression_(EnableNewSuppression()),
|
|
moving_average_(kFftLengthBy2Plus1,
|
|
config.suppressor.nearend_average_blocks) {
|
|
RTC_DCHECK_LT(0, state_change_duration_blocks_);
|
|
one_by_state_change_duration_blocks_ = 1.f / state_change_duration_blocks_;
|
|
last_gain_.fill(1.f);
|
|
last_masker_.fill(0.f);
|
|
gain_increase_.fill(1.f);
|
|
last_nearend_.fill(0.f);
|
|
last_echo_.fill(0.f);
|
|
|
|
// Compute per-band masking thresholds.
|
|
constexpr size_t kLastLfBand = 5;
|
|
constexpr size_t kFirstHfBand = 8;
|
|
RTC_DCHECK_LT(kLastLfBand, kFirstHfBand);
|
|
auto& lf = config.suppressor.mask_lf;
|
|
auto& hf = config.suppressor.mask_hf;
|
|
RTC_DCHECK_LT(lf.enr_transparent, lf.enr_suppress);
|
|
RTC_DCHECK_LT(hf.enr_transparent, hf.enr_suppress);
|
|
for (size_t k = 0; k < kFftLengthBy2Plus1; k++) {
|
|
float a;
|
|
if (k <= kLastLfBand) {
|
|
a = 0.f;
|
|
} else if (k < kFirstHfBand) {
|
|
a = (k - kLastLfBand) / static_cast<float>(kFirstHfBand - kLastLfBand);
|
|
} else {
|
|
a = 1.f;
|
|
}
|
|
enr_transparent_[k] = (1 - a) * lf.enr_transparent + a * hf.enr_transparent;
|
|
enr_suppress_[k] = (1 - a) * lf.enr_suppress + a * hf.enr_suppress;
|
|
emr_transparent_[k] = (1 - a) * lf.emr_transparent + a * hf.emr_transparent;
|
|
}
|
|
}
|
|
|
|
SuppressionGain::~SuppressionGain() = default;
|
|
|
|
void SuppressionGain::GetGain(
|
|
const std::array<float, kFftLengthBy2Plus1>& nearend_spectrum,
|
|
const std::array<float, kFftLengthBy2Plus1>& echo_spectrum,
|
|
const std::array<float, kFftLengthBy2Plus1>& comfort_noise_spectrum,
|
|
const FftData& linear_aec_fft,
|
|
const FftData& render_fft,
|
|
const FftData& capture_fft,
|
|
const RenderSignalAnalyzer& render_signal_analyzer,
|
|
const AecState& aec_state,
|
|
const std::vector<std::vector<float>>& render,
|
|
float* high_bands_gain,
|
|
std::array<float, kFftLengthBy2Plus1>* low_band_gain) {
|
|
RTC_DCHECK(high_bands_gain);
|
|
RTC_DCHECK(low_band_gain);
|
|
|
|
std::array<float, kFftLengthBy2Plus1> nearend_average;
|
|
moving_average_.Average(nearend_spectrum, nearend_average);
|
|
|
|
// Compute gain for the lower band.
|
|
bool low_noise_render = low_render_detector_.Detect(render);
|
|
const absl::optional<int> narrow_peak_band =
|
|
render_signal_analyzer.NarrowPeakBand();
|
|
LowerBandGain(low_noise_render, aec_state, nearend_average, echo_spectrum,
|
|
comfort_noise_spectrum, low_band_gain);
|
|
|
|
// Adjust the gain for bands where the coherence indicates not echo.
|
|
if (config_.suppressor.bands_with_reliable_coherence > 0 &&
|
|
!enable_transparency_improvements_) {
|
|
std::array<float, kFftLengthBy2Plus1> G_coherence;
|
|
coherence_gain_.ComputeGain(linear_aec_fft, render_fft, capture_fft,
|
|
G_coherence);
|
|
for (size_t k = 0; k < config_.suppressor.bands_with_reliable_coherence;
|
|
++k) {
|
|
(*low_band_gain)[k] = std::max((*low_band_gain)[k], G_coherence[k]);
|
|
}
|
|
}
|
|
|
|
// Limit the gain of the lower bands during start up and after resets.
|
|
const float gain_upper_bound = aec_state.SuppressionGainLimit();
|
|
if (gain_upper_bound < 1.f) {
|
|
for (size_t k = 0; k < low_band_gain->size(); ++k) {
|
|
(*low_band_gain)[k] = std::min((*low_band_gain)[k], gain_upper_bound);
|
|
}
|
|
}
|
|
|
|
// Compute the gain for the upper bands.
|
|
*high_bands_gain = UpperBandsGain(narrow_peak_band, aec_state.SaturatedEcho(),
|
|
render, *low_band_gain);
|
|
}
|
|
|
|
void SuppressionGain::SetInitialState(bool state) {
|
|
initial_state_ = state;
|
|
if (state) {
|
|
initial_state_change_counter_ = state_change_duration_blocks_;
|
|
} else {
|
|
initial_state_change_counter_ = 0;
|
|
}
|
|
}
|
|
|
|
void SuppressionGain::UpdateGainIncrease(
|
|
bool low_noise_render,
|
|
bool linear_echo_estimate,
|
|
bool saturated_echo,
|
|
const std::array<float, kFftLengthBy2Plus1>& echo,
|
|
const std::array<float, kFftLengthBy2Plus1>& new_gain) {
|
|
float max_inc;
|
|
float max_dec;
|
|
float rate_inc;
|
|
float rate_dec;
|
|
float min_inc;
|
|
float min_dec;
|
|
|
|
RTC_DCHECK_GE(state_change_duration_blocks_, initial_state_change_counter_);
|
|
if (initial_state_change_counter_ > 0) {
|
|
if (--initial_state_change_counter_ == 0) {
|
|
initial_state_ = false;
|
|
}
|
|
}
|
|
RTC_DCHECK_LE(0, initial_state_change_counter_);
|
|
|
|
// EchoCanceller3Config::GainUpdates
|
|
auto& p = config_.gain_updates;
|
|
if (!linear_echo_estimate) {
|
|
max_inc = p.nonlinear.max_inc;
|
|
max_dec = p.nonlinear.max_dec;
|
|
rate_inc = p.nonlinear.rate_inc;
|
|
rate_dec = p.nonlinear.rate_dec;
|
|
min_inc = p.nonlinear.min_inc;
|
|
min_dec = p.nonlinear.min_dec;
|
|
} else if (initial_state_ && !saturated_echo) {
|
|
if (initial_state_change_counter_ > 0) {
|
|
float change_factor =
|
|
initial_state_change_counter_ * one_by_state_change_duration_blocks_;
|
|
|
|
auto average = [](float from, float to, float from_weight) {
|
|
return from * from_weight + to * (1.f - from_weight);
|
|
};
|
|
|
|
max_inc = average(p.initial.max_inc, p.normal.max_inc, change_factor);
|
|
max_dec = average(p.initial.max_dec, p.normal.max_dec, change_factor);
|
|
rate_inc = average(p.initial.rate_inc, p.normal.rate_inc, change_factor);
|
|
rate_dec = average(p.initial.rate_dec, p.normal.rate_dec, change_factor);
|
|
min_inc = average(p.initial.min_inc, p.normal.min_inc, change_factor);
|
|
min_dec = average(p.initial.min_dec, p.normal.min_dec, change_factor);
|
|
} else {
|
|
max_inc = p.initial.max_inc;
|
|
max_dec = p.initial.max_dec;
|
|
rate_inc = p.initial.rate_inc;
|
|
rate_dec = p.initial.rate_dec;
|
|
min_inc = p.initial.min_inc;
|
|
min_dec = p.initial.min_dec;
|
|
}
|
|
} else if (low_noise_render) {
|
|
max_inc = p.low_noise.max_inc;
|
|
max_dec = p.low_noise.max_dec;
|
|
rate_inc = p.low_noise.rate_inc;
|
|
rate_dec = p.low_noise.rate_dec;
|
|
min_inc = p.low_noise.min_inc;
|
|
min_dec = p.low_noise.min_dec;
|
|
} else if (!saturated_echo) {
|
|
max_inc = p.normal.max_inc;
|
|
max_dec = p.normal.max_dec;
|
|
rate_inc = p.normal.rate_inc;
|
|
rate_dec = p.normal.rate_dec;
|
|
min_inc = p.normal.min_inc;
|
|
min_dec = p.normal.min_dec;
|
|
} else {
|
|
max_inc = p.saturation.max_inc;
|
|
max_dec = p.saturation.max_dec;
|
|
rate_inc = p.saturation.rate_inc;
|
|
rate_dec = p.saturation.rate_dec;
|
|
min_inc = p.saturation.min_inc;
|
|
min_dec = p.saturation.min_dec;
|
|
}
|
|
|
|
for (size_t k = 0; k < new_gain.size(); ++k) {
|
|
auto increase_update = [](float new_gain, float last_gain,
|
|
float current_inc, float max_inc, float min_inc,
|
|
float change_rate) {
|
|
return new_gain > last_gain ? std::min(max_inc, current_inc * change_rate)
|
|
: min_inc;
|
|
};
|
|
|
|
if (echo[k] > last_echo_[k]) {
|
|
gain_increase_[k] =
|
|
increase_update(new_gain[k], last_gain_[k], gain_increase_[k],
|
|
max_inc, min_inc, rate_inc);
|
|
} else {
|
|
gain_increase_[k] =
|
|
increase_update(new_gain[k], last_gain_[k], gain_increase_[k],
|
|
max_dec, min_dec, rate_dec);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Detects when the render signal can be considered to have low power and
|
|
// consist of stationary noise.
|
|
bool SuppressionGain::LowNoiseRenderDetector::Detect(
|
|
const std::vector<std::vector<float>>& render) {
|
|
float x2_sum = 0.f;
|
|
float x2_max = 0.f;
|
|
for (auto x_k : render[0]) {
|
|
const float x2 = x_k * x_k;
|
|
x2_sum += x2;
|
|
x2_max = std::max(x2_max, x2);
|
|
}
|
|
|
|
constexpr float kThreshold = 50.f * 50.f * 64.f;
|
|
const bool low_noise_render =
|
|
average_power_ < kThreshold && x2_max < 3 * average_power_;
|
|
average_power_ = average_power_ * 0.9f + x2_sum * 0.1f;
|
|
return low_noise_render;
|
|
}
|
|
|
|
} // namespace webrtc
|