webrtc/modules/remote_bitrate_estimator/aimd_rate_control.cc
Bjorn Terelius 0c7ec80927 Limit BWE reductions before first measured throughput.
After detecting overuse of the network capacity, the target
bitrate is reduced. Normally, this should happen at most once
per RTT to prevent repeated reductions from the same overuse
signal. This CL fixes a bug that allowed repeated reductions
if an overuse was detected before it had the first reliable
throughput measurement.

The fix is guarded by a field trial. To enable the fix, use
WebRTC-BweInitialBackOffInterval/Enabled-200/

Bug: webrtc:9493
Change-Id: Iae566227fd94ebb8a4449406572158a8b79d9c53
Reviewed-on: https://webrtc-review.googlesource.com/88765
Commit-Queue: Björn Terelius <terelius@webrtc.org>
Reviewed-by: Stefan Holmer <stefan@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#24021}
2018-07-18 13:51:05 +00:00

424 lines
16 KiB
C++

/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/remote_bitrate_estimator/aimd_rate_control.h"
#include <inttypes.h>
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstdio>
#include <string>
#include "modules/remote_bitrate_estimator/include/bwe_defines.h"
#include "modules/remote_bitrate_estimator/include/remote_bitrate_estimator.h"
#include "modules/remote_bitrate_estimator/overuse_detector.h"
#include "modules/remote_bitrate_estimator/test/bwe_test_logging.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/safe_minmax.h"
#include "system_wrappers/include/field_trial.h"
namespace webrtc {
static const int64_t kDefaultRttMs = 200;
static const int64_t kMaxFeedbackIntervalMs = 1000;
static const float kDefaultBackoffFactor = 0.85f;
static const int64_t kDefaultInitialBackOffIntervalMs = 200;
const char kBweBackOffFactorExperiment[] = "WebRTC-BweBackOffFactor";
const char kBweInitialBackOffIntervalExperiment[] =
"WebRTC-BweInitialBackOffInterval";
float ReadBackoffFactor() {
std::string experiment_string =
webrtc::field_trial::FindFullName(kBweBackOffFactorExperiment);
float backoff_factor;
int parsed_values =
sscanf(experiment_string.c_str(), "Enabled-%f", &backoff_factor);
if (parsed_values == 1) {
if (backoff_factor >= 1.0f) {
RTC_LOG(WARNING) << "Back-off factor must be less than 1.";
} else if (backoff_factor <= 0.0f) {
RTC_LOG(WARNING) << "Back-off factor must be greater than 0.";
} else {
return backoff_factor;
}
}
RTC_LOG(LS_WARNING) << "Failed to parse parameters for AimdRateControl "
"experiment from field trial string. Using default.";
return kDefaultBackoffFactor;
}
int64_t ReadInitialBackoffIntervalMs() {
std::string experiment_string =
webrtc::field_trial::FindFullName(kBweInitialBackOffIntervalExperiment);
int64_t backoff_interval;
int parsed_values =
sscanf(experiment_string.c_str(), "Enabled-%" SCNd64, &backoff_interval);
if (parsed_values == 1) {
if (10 <= backoff_interval && backoff_interval <= 200) {
return backoff_interval;
}
RTC_LOG(WARNING)
<< "Initial back-off interval must be between 10 and 200 ms.";
}
RTC_LOG(LS_WARNING) << "Failed to parse parameters for "
<< kBweInitialBackOffIntervalExperiment
<< " experiment. Using default.";
return kDefaultInitialBackOffIntervalMs;
}
AimdRateControl::AimdRateControl()
: min_configured_bitrate_bps_(congestion_controller::GetMinBitrateBps()),
max_configured_bitrate_bps_(30000000),
current_bitrate_bps_(max_configured_bitrate_bps_),
latest_estimated_throughput_bps_(current_bitrate_bps_),
avg_max_bitrate_kbps_(-1.0f),
var_max_bitrate_kbps_(0.4f),
rate_control_state_(kRcHold),
rate_control_region_(kRcMaxUnknown),
time_last_bitrate_change_(-1),
time_last_bitrate_decrease_(-1),
time_first_throughput_estimate_(-1),
bitrate_is_initialized_(false),
beta_(webrtc::field_trial::IsEnabled(kBweBackOffFactorExperiment)
? ReadBackoffFactor()
: kDefaultBackoffFactor),
rtt_(kDefaultRttMs),
in_experiment_(!AdaptiveThresholdExperimentIsDisabled()),
smoothing_experiment_(
webrtc::field_trial::IsEnabled("WebRTC-Audio-BandwidthSmoothing")),
in_initial_backoff_interval_experiment_(
webrtc::field_trial::IsEnabled(kBweInitialBackOffIntervalExperiment)),
initial_backoff_interval_ms_(kDefaultInitialBackOffIntervalMs) {
if (in_initial_backoff_interval_experiment_) {
initial_backoff_interval_ms_ = ReadInitialBackoffIntervalMs();
RTC_LOG(LS_INFO) << "Using aimd rate control with initial back-off interval"
<< " " << initial_backoff_interval_ms_ << " ms.";
}
RTC_LOG(LS_INFO) << "Using aimd rate control with back off factor " << beta_;
}
AimdRateControl::~AimdRateControl() {}
void AimdRateControl::SetStartBitrate(int start_bitrate_bps) {
current_bitrate_bps_ = start_bitrate_bps;
latest_estimated_throughput_bps_ = current_bitrate_bps_;
bitrate_is_initialized_ = true;
}
void AimdRateControl::SetMinBitrate(int min_bitrate_bps) {
min_configured_bitrate_bps_ = min_bitrate_bps;
current_bitrate_bps_ = std::max<int>(min_bitrate_bps, current_bitrate_bps_);
}
bool AimdRateControl::ValidEstimate() const {
return bitrate_is_initialized_;
}
int64_t AimdRateControl::GetFeedbackInterval() const {
// Estimate how often we can send RTCP if we allocate up to 5% of bandwidth
// to feedback.
static const int kRtcpSize = 80;
const int64_t interval = static_cast<int64_t>(
kRtcpSize * 8.0 * 1000.0 / (0.05 * current_bitrate_bps_) + 0.5);
const int64_t kMinFeedbackIntervalMs = 200;
return rtc::SafeClamp(interval, kMinFeedbackIntervalMs,
kMaxFeedbackIntervalMs);
}
bool AimdRateControl::TimeToReduceFurther(
int64_t now_ms,
uint32_t estimated_throughput_bps) const {
const int64_t bitrate_reduction_interval =
std::max<int64_t>(std::min<int64_t>(rtt_, 200), 10);
if (now_ms - time_last_bitrate_change_ >= bitrate_reduction_interval) {
return true;
}
if (ValidEstimate()) {
// TODO(terelius/holmer): Investigate consequences of increasing
// the threshold to 0.95 * LatestEstimate().
const uint32_t threshold = static_cast<uint32_t>(0.5 * LatestEstimate());
return estimated_throughput_bps < threshold;
}
return false;
}
bool AimdRateControl::InitialTimeToReduceFurther(int64_t now_ms) const {
if (!in_initial_backoff_interval_experiment_) {
return ValidEstimate() &&
TimeToReduceFurther(now_ms, LatestEstimate() / 2 - 1);
}
// TODO(terelius): We could use the RTT (clamped to suitable limits) instead
// of a fixed bitrate_reduction_interval.
if (time_last_bitrate_decrease_ == -1 ||
now_ms - time_last_bitrate_decrease_ >= initial_backoff_interval_ms_) {
return true;
}
return false;
}
uint32_t AimdRateControl::LatestEstimate() const {
return current_bitrate_bps_;
}
void AimdRateControl::SetRtt(int64_t rtt) {
rtt_ = rtt;
}
uint32_t AimdRateControl::Update(const RateControlInput* input,
int64_t now_ms) {
RTC_CHECK(input);
// Set the initial bit rate value to what we're receiving the first half
// second.
// TODO(bugs.webrtc.org/9379): The comment above doesn't match to the code.
if (!bitrate_is_initialized_) {
const int64_t kInitializationTimeMs = 5000;
RTC_DCHECK_LE(kBitrateWindowMs, kInitializationTimeMs);
if (time_first_throughput_estimate_ < 0) {
if (input->estimated_throughput_bps)
time_first_throughput_estimate_ = now_ms;
} else if (now_ms - time_first_throughput_estimate_ >
kInitializationTimeMs &&
input->estimated_throughput_bps) {
current_bitrate_bps_ = *input->estimated_throughput_bps;
bitrate_is_initialized_ = true;
}
}
current_bitrate_bps_ = ChangeBitrate(current_bitrate_bps_, *input, now_ms);
return current_bitrate_bps_;
}
void AimdRateControl::SetEstimate(int bitrate_bps, int64_t now_ms) {
bitrate_is_initialized_ = true;
uint32_t prev_bitrate_bps = current_bitrate_bps_;
current_bitrate_bps_ = ClampBitrate(bitrate_bps, bitrate_bps);
time_last_bitrate_change_ = now_ms;
if (current_bitrate_bps_ < prev_bitrate_bps) {
time_last_bitrate_decrease_ = now_ms;
}
}
int AimdRateControl::GetNearMaxIncreaseRateBps() const {
RTC_DCHECK_GT(current_bitrate_bps_, 0);
double bits_per_frame = static_cast<double>(current_bitrate_bps_) / 30.0;
double packets_per_frame = std::ceil(bits_per_frame / (8.0 * 1200.0));
double avg_packet_size_bits = bits_per_frame / packets_per_frame;
// Approximate the over-use estimator delay to 100 ms.
const int64_t response_time = in_experiment_ ? (rtt_ + 100) * 2 : rtt_ + 100;
constexpr double kMinIncreaseRateBps = 4000;
return static_cast<int>(std::max(
kMinIncreaseRateBps, (avg_packet_size_bits * 1000) / response_time));
}
int AimdRateControl::GetExpectedBandwidthPeriodMs() const {
const int kMinPeriodMs = smoothing_experiment_ ? 500 : 2000;
constexpr int kDefaultPeriodMs = 3000;
constexpr int kMaxPeriodMs = 50000;
int increase_rate = GetNearMaxIncreaseRateBps();
if (!last_decrease_)
return smoothing_experiment_ ? kMinPeriodMs : kDefaultPeriodMs;
return std::min(kMaxPeriodMs,
std::max<int>(1000 * static_cast<int64_t>(*last_decrease_) /
increase_rate,
kMinPeriodMs));
}
uint32_t AimdRateControl::ChangeBitrate(uint32_t new_bitrate_bps,
const RateControlInput& input,
int64_t now_ms) {
uint32_t estimated_throughput_bps =
input.estimated_throughput_bps.value_or(latest_estimated_throughput_bps_);
if (input.estimated_throughput_bps)
latest_estimated_throughput_bps_ = *input.estimated_throughput_bps;
// An over-use should always trigger us to reduce the bitrate, even though
// we have not yet established our first estimate. By acting on the over-use,
// we will end up with a valid estimate.
if (!bitrate_is_initialized_ &&
input.bw_state != BandwidthUsage::kBwOverusing)
return current_bitrate_bps_;
ChangeState(input, now_ms);
// Calculated here because it's used in multiple places.
const float estimated_throughput_kbps = estimated_throughput_bps / 1000.0f;
// Calculate the max bit rate std dev given the normalized
// variance and the current throughput bitrate.
const float std_max_bit_rate =
sqrt(var_max_bitrate_kbps_ * avg_max_bitrate_kbps_);
switch (rate_control_state_) {
case kRcHold:
break;
case kRcIncrease:
if (avg_max_bitrate_kbps_ >= 0 &&
estimated_throughput_kbps >
avg_max_bitrate_kbps_ + 3 * std_max_bit_rate) {
ChangeRegion(kRcMaxUnknown);
avg_max_bitrate_kbps_ = -1.0;
}
if (rate_control_region_ == kRcNearMax) {
uint32_t additive_increase_bps =
AdditiveRateIncrease(now_ms, time_last_bitrate_change_);
new_bitrate_bps += additive_increase_bps;
} else {
uint32_t multiplicative_increase_bps = MultiplicativeRateIncrease(
now_ms, time_last_bitrate_change_, new_bitrate_bps);
new_bitrate_bps += multiplicative_increase_bps;
}
time_last_bitrate_change_ = now_ms;
break;
case kRcDecrease:
// Set bit rate to something slightly lower than max
// to get rid of any self-induced delay.
new_bitrate_bps =
static_cast<uint32_t>(beta_ * estimated_throughput_bps + 0.5);
if (new_bitrate_bps > current_bitrate_bps_) {
// Avoid increasing the rate when over-using.
if (rate_control_region_ != kRcMaxUnknown) {
new_bitrate_bps = static_cast<uint32_t>(
beta_ * avg_max_bitrate_kbps_ * 1000 + 0.5f);
}
new_bitrate_bps = std::min(new_bitrate_bps, current_bitrate_bps_);
}
ChangeRegion(kRcNearMax);
if (bitrate_is_initialized_ &&
estimated_throughput_bps < current_bitrate_bps_) {
constexpr float kDegradationFactor = 0.9f;
if (smoothing_experiment_ &&
new_bitrate_bps <
kDegradationFactor * beta_ * current_bitrate_bps_) {
// If bitrate decreases more than a normal back off after overuse, it
// indicates a real network degradation. We do not let such a decrease
// to determine the bandwidth estimation period.
last_decrease_ = absl::nullopt;
} else {
last_decrease_ = current_bitrate_bps_ - new_bitrate_bps;
}
}
if (estimated_throughput_kbps <
avg_max_bitrate_kbps_ - 3 * std_max_bit_rate) {
avg_max_bitrate_kbps_ = -1.0f;
}
bitrate_is_initialized_ = true;
UpdateMaxThroughputEstimate(estimated_throughput_kbps);
// Stay on hold until the pipes are cleared.
rate_control_state_ = kRcHold;
time_last_bitrate_change_ = now_ms;
time_last_bitrate_decrease_ = now_ms;
break;
default:
assert(false);
}
return ClampBitrate(new_bitrate_bps, estimated_throughput_bps);
}
uint32_t AimdRateControl::ClampBitrate(
uint32_t new_bitrate_bps,
uint32_t estimated_throughput_bps) const {
// Don't change the bit rate if the send side is too far off.
// We allow a bit more lag at very low rates to not too easily get stuck if
// the encoder produces uneven outputs.
const uint32_t max_bitrate_bps =
static_cast<uint32_t>(1.5f * estimated_throughput_bps) + 10000;
if (new_bitrate_bps > current_bitrate_bps_ &&
new_bitrate_bps > max_bitrate_bps) {
new_bitrate_bps = std::max(current_bitrate_bps_, max_bitrate_bps);
}
new_bitrate_bps = std::max(new_bitrate_bps, min_configured_bitrate_bps_);
return new_bitrate_bps;
}
uint32_t AimdRateControl::MultiplicativeRateIncrease(
int64_t now_ms,
int64_t last_ms,
uint32_t current_bitrate_bps) const {
double alpha = 1.08;
if (last_ms > -1) {
auto time_since_last_update_ms =
rtc::SafeMin<int64_t>(now_ms - last_ms, 1000);
alpha = pow(alpha, time_since_last_update_ms / 1000.0);
}
uint32_t multiplicative_increase_bps =
std::max(current_bitrate_bps * (alpha - 1.0), 1000.0);
return multiplicative_increase_bps;
}
uint32_t AimdRateControl::AdditiveRateIncrease(int64_t now_ms,
int64_t last_ms) const {
return static_cast<uint32_t>((now_ms - last_ms) *
GetNearMaxIncreaseRateBps() / 1000);
}
void AimdRateControl::UpdateMaxThroughputEstimate(
float estimated_throughput_kbps) {
const float alpha = 0.05f;
if (avg_max_bitrate_kbps_ == -1.0f) {
avg_max_bitrate_kbps_ = estimated_throughput_kbps;
} else {
avg_max_bitrate_kbps_ =
(1 - alpha) * avg_max_bitrate_kbps_ + alpha * estimated_throughput_kbps;
}
// Estimate the max bit rate variance and normalize the variance
// with the average max bit rate.
const float norm = std::max(avg_max_bitrate_kbps_, 1.0f);
var_max_bitrate_kbps_ =
(1 - alpha) * var_max_bitrate_kbps_ +
alpha * (avg_max_bitrate_kbps_ - estimated_throughput_kbps) *
(avg_max_bitrate_kbps_ - estimated_throughput_kbps) / norm;
// 0.4 ~= 14 kbit/s at 500 kbit/s
if (var_max_bitrate_kbps_ < 0.4f) {
var_max_bitrate_kbps_ = 0.4f;
}
// 2.5f ~= 35 kbit/s at 500 kbit/s
if (var_max_bitrate_kbps_ > 2.5f) {
var_max_bitrate_kbps_ = 2.5f;
}
}
void AimdRateControl::ChangeState(const RateControlInput& input,
int64_t now_ms) {
switch (input.bw_state) {
case BandwidthUsage::kBwNormal:
if (rate_control_state_ == kRcHold) {
time_last_bitrate_change_ = now_ms;
rate_control_state_ = kRcIncrease;
}
break;
case BandwidthUsage::kBwOverusing:
if (rate_control_state_ != kRcDecrease) {
rate_control_state_ = kRcDecrease;
}
break;
case BandwidthUsage::kBwUnderusing:
rate_control_state_ = kRcHold;
break;
default:
assert(false);
}
}
void AimdRateControl::ChangeRegion(RateControlRegion region) {
rate_control_region_ = region;
}
} // namespace webrtc