mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-15 14:50:39 +01:00

The frame time deltas are now capped based on the current noise. This has been tested in various conditions using both screen content and typical mobile video settings, to produce delays that are not overly high screen content, and simultaneously not negatively affect mobile calls on really bad network that may have high natural jitter. Bug: webrtc:9898 Change-Id: I51ad279af156aba1b5cc75ae203334a34bce9d48 Reviewed-on: https://webrtc-review.googlesource.com/c/107349 Reviewed-by: Stefan Holmer <stefan@webrtc.org> Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org> Commit-Queue: Erik Språng <sprang@webrtc.org> Cr-Commit-Position: refs/heads/master@{#25469}
441 lines
14 KiB
C++
441 lines
14 KiB
C++
/*
|
|
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/video_coding/jitter_estimator.h"
|
|
|
|
#include <assert.h>
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <algorithm>
|
|
#include <string>
|
|
|
|
#include "absl/types/optional.h"
|
|
#include "modules/video_coding/internal_defines.h"
|
|
#include "modules/video_coding/rtt_filter.h"
|
|
#include "rtc_base/experiments/jitter_upper_bound_experiment.h"
|
|
#include "system_wrappers/include/clock.h"
|
|
#include "system_wrappers/include/field_trial.h"
|
|
|
|
namespace webrtc {
|
|
namespace {
|
|
static constexpr uint32_t kStartupDelaySamples = 30;
|
|
static constexpr int64_t kFsAccuStartupSamples = 5;
|
|
static constexpr double kMaxFramerateEstimate = 200.0;
|
|
static constexpr int64_t kNackCountTimeoutMs = 60000;
|
|
static constexpr double kDefaultMaxTimestampDeviationInSigmas = 3.5;
|
|
} // namespace
|
|
|
|
VCMJitterEstimator::VCMJitterEstimator(const Clock* clock,
|
|
int32_t vcmId,
|
|
int32_t receiverId)
|
|
: _vcmId(vcmId),
|
|
_receiverId(receiverId),
|
|
_phi(0.97),
|
|
_psi(0.9999),
|
|
_alphaCountMax(400),
|
|
_thetaLow(0.000001),
|
|
_nackLimit(3),
|
|
_numStdDevDelayOutlier(15),
|
|
_numStdDevFrameSizeOutlier(3),
|
|
_noiseStdDevs(2.33), // ~Less than 1% chance
|
|
// (look up in normal distribution table)...
|
|
_noiseStdDevOffset(30.0), // ...of getting 30 ms freezes
|
|
_rttFilter(),
|
|
fps_counter_(30), // TODO(sprang): Use an estimator with limit based on
|
|
// time, rather than number of samples.
|
|
time_deviation_upper_bound_(
|
|
JitterUpperBoundExperiment::GetUpperBoundSigmas().value_or(
|
|
kDefaultMaxTimestampDeviationInSigmas)),
|
|
clock_(clock) {
|
|
Reset();
|
|
}
|
|
|
|
VCMJitterEstimator::~VCMJitterEstimator() {}
|
|
|
|
VCMJitterEstimator& VCMJitterEstimator::operator=(
|
|
const VCMJitterEstimator& rhs) {
|
|
if (this != &rhs) {
|
|
memcpy(_thetaCov, rhs._thetaCov, sizeof(_thetaCov));
|
|
memcpy(_Qcov, rhs._Qcov, sizeof(_Qcov));
|
|
|
|
_vcmId = rhs._vcmId;
|
|
_receiverId = rhs._receiverId;
|
|
_avgFrameSize = rhs._avgFrameSize;
|
|
_varFrameSize = rhs._varFrameSize;
|
|
_maxFrameSize = rhs._maxFrameSize;
|
|
_fsSum = rhs._fsSum;
|
|
_fsCount = rhs._fsCount;
|
|
_lastUpdateT = rhs._lastUpdateT;
|
|
_prevEstimate = rhs._prevEstimate;
|
|
_prevFrameSize = rhs._prevFrameSize;
|
|
_avgNoise = rhs._avgNoise;
|
|
_alphaCount = rhs._alphaCount;
|
|
_filterJitterEstimate = rhs._filterJitterEstimate;
|
|
_startupCount = rhs._startupCount;
|
|
_latestNackTimestamp = rhs._latestNackTimestamp;
|
|
_nackCount = rhs._nackCount;
|
|
_rttFilter = rhs._rttFilter;
|
|
clock_ = rhs.clock_;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
// Resets the JitterEstimate
|
|
void VCMJitterEstimator::Reset() {
|
|
_theta[0] = 1 / (512e3 / 8);
|
|
_theta[1] = 0;
|
|
_varNoise = 4.0;
|
|
|
|
_thetaCov[0][0] = 1e-4;
|
|
_thetaCov[1][1] = 1e2;
|
|
_thetaCov[0][1] = _thetaCov[1][0] = 0;
|
|
_Qcov[0][0] = 2.5e-10;
|
|
_Qcov[1][1] = 1e-10;
|
|
_Qcov[0][1] = _Qcov[1][0] = 0;
|
|
_avgFrameSize = 500;
|
|
_maxFrameSize = 500;
|
|
_varFrameSize = 100;
|
|
_lastUpdateT = -1;
|
|
_prevEstimate = -1.0;
|
|
_prevFrameSize = 0;
|
|
_avgNoise = 0.0;
|
|
_alphaCount = 1;
|
|
_filterJitterEstimate = 0.0;
|
|
_latestNackTimestamp = 0;
|
|
_nackCount = 0;
|
|
_latestNackTimestamp = 0;
|
|
_fsSum = 0;
|
|
_fsCount = 0;
|
|
_startupCount = 0;
|
|
_rttFilter.Reset();
|
|
fps_counter_.Reset();
|
|
}
|
|
|
|
void VCMJitterEstimator::ResetNackCount() {
|
|
_nackCount = 0;
|
|
}
|
|
|
|
// Updates the estimates with the new measurements
|
|
void VCMJitterEstimator::UpdateEstimate(int64_t frameDelayMS,
|
|
uint32_t frameSizeBytes,
|
|
bool incompleteFrame /* = false */) {
|
|
if (frameSizeBytes == 0) {
|
|
return;
|
|
}
|
|
int deltaFS = frameSizeBytes - _prevFrameSize;
|
|
if (_fsCount < kFsAccuStartupSamples) {
|
|
_fsSum += frameSizeBytes;
|
|
_fsCount++;
|
|
} else if (_fsCount == kFsAccuStartupSamples) {
|
|
// Give the frame size filter
|
|
_avgFrameSize = static_cast<double>(_fsSum) / static_cast<double>(_fsCount);
|
|
_fsCount++;
|
|
}
|
|
if (!incompleteFrame || frameSizeBytes > _avgFrameSize) {
|
|
double avgFrameSize = _phi * _avgFrameSize + (1 - _phi) * frameSizeBytes;
|
|
if (frameSizeBytes < _avgFrameSize + 2 * sqrt(_varFrameSize)) {
|
|
// Only update the average frame size if this sample wasn't a
|
|
// key frame
|
|
_avgFrameSize = avgFrameSize;
|
|
}
|
|
// Update the variance anyway since we want to capture cases where we only
|
|
// get
|
|
// key frames.
|
|
_varFrameSize = VCM_MAX(
|
|
_phi * _varFrameSize + (1 - _phi) * (frameSizeBytes - avgFrameSize) *
|
|
(frameSizeBytes - avgFrameSize),
|
|
1.0);
|
|
}
|
|
|
|
// Update max frameSize estimate
|
|
_maxFrameSize =
|
|
VCM_MAX(_psi * _maxFrameSize, static_cast<double>(frameSizeBytes));
|
|
|
|
if (_prevFrameSize == 0) {
|
|
_prevFrameSize = frameSizeBytes;
|
|
return;
|
|
}
|
|
_prevFrameSize = frameSizeBytes;
|
|
|
|
// Cap frameDelayMS based on the current time deviation noise.
|
|
int64_t max_time_deviation_ms =
|
|
static_cast<int64_t>(time_deviation_upper_bound_ * sqrt(_varNoise) + 0.5);
|
|
frameDelayMS = std::max(std::min(frameDelayMS, max_time_deviation_ms),
|
|
-max_time_deviation_ms);
|
|
|
|
// Only update the Kalman filter if the sample is not considered
|
|
// an extreme outlier. Even if it is an extreme outlier from a
|
|
// delay point of view, if the frame size also is large the
|
|
// deviation is probably due to an incorrect line slope.
|
|
double deviation = DeviationFromExpectedDelay(frameDelayMS, deltaFS);
|
|
|
|
if (fabs(deviation) < _numStdDevDelayOutlier * sqrt(_varNoise) ||
|
|
frameSizeBytes >
|
|
_avgFrameSize + _numStdDevFrameSizeOutlier * sqrt(_varFrameSize)) {
|
|
// Update the variance of the deviation from the
|
|
// line given by the Kalman filter
|
|
EstimateRandomJitter(deviation, incompleteFrame);
|
|
// Prevent updating with frames which have been congested by a large
|
|
// frame, and therefore arrives almost at the same time as that frame.
|
|
// This can occur when we receive a large frame (key frame) which
|
|
// has been delayed. The next frame is of normal size (delta frame),
|
|
// and thus deltaFS will be << 0. This removes all frame samples
|
|
// which arrives after a key frame.
|
|
if ((!incompleteFrame || deviation >= 0.0) &&
|
|
static_cast<double>(deltaFS) > -0.25 * _maxFrameSize) {
|
|
// Update the Kalman filter with the new data
|
|
KalmanEstimateChannel(frameDelayMS, deltaFS);
|
|
}
|
|
} else {
|
|
int nStdDev =
|
|
(deviation >= 0) ? _numStdDevDelayOutlier : -_numStdDevDelayOutlier;
|
|
EstimateRandomJitter(nStdDev * sqrt(_varNoise), incompleteFrame);
|
|
}
|
|
// Post process the total estimated jitter
|
|
if (_startupCount >= kStartupDelaySamples) {
|
|
PostProcessEstimate();
|
|
} else {
|
|
_startupCount++;
|
|
}
|
|
}
|
|
|
|
// Updates the nack/packet ratio
|
|
void VCMJitterEstimator::FrameNacked() {
|
|
if (_nackCount < _nackLimit) {
|
|
_nackCount++;
|
|
}
|
|
_latestNackTimestamp = clock_->TimeInMicroseconds();
|
|
}
|
|
|
|
// Updates Kalman estimate of the channel
|
|
// The caller is expected to sanity check the inputs.
|
|
void VCMJitterEstimator::KalmanEstimateChannel(int64_t frameDelayMS,
|
|
int32_t deltaFSBytes) {
|
|
double Mh[2];
|
|
double hMh_sigma;
|
|
double kalmanGain[2];
|
|
double measureRes;
|
|
double t00, t01;
|
|
|
|
// Kalman filtering
|
|
|
|
// Prediction
|
|
// M = M + Q
|
|
_thetaCov[0][0] += _Qcov[0][0];
|
|
_thetaCov[0][1] += _Qcov[0][1];
|
|
_thetaCov[1][0] += _Qcov[1][0];
|
|
_thetaCov[1][1] += _Qcov[1][1];
|
|
|
|
// Kalman gain
|
|
// K = M*h'/(sigma2n + h*M*h') = M*h'/(1 + h*M*h')
|
|
// h = [dFS 1]
|
|
// Mh = M*h'
|
|
// hMh_sigma = h*M*h' + R
|
|
Mh[0] = _thetaCov[0][0] * deltaFSBytes + _thetaCov[0][1];
|
|
Mh[1] = _thetaCov[1][0] * deltaFSBytes + _thetaCov[1][1];
|
|
// sigma weights measurements with a small deltaFS as noisy and
|
|
// measurements with large deltaFS as good
|
|
if (_maxFrameSize < 1.0) {
|
|
return;
|
|
}
|
|
double sigma = (300.0 * exp(-fabs(static_cast<double>(deltaFSBytes)) /
|
|
(1e0 * _maxFrameSize)) +
|
|
1) *
|
|
sqrt(_varNoise);
|
|
if (sigma < 1.0) {
|
|
sigma = 1.0;
|
|
}
|
|
hMh_sigma = deltaFSBytes * Mh[0] + Mh[1] + sigma;
|
|
if ((hMh_sigma < 1e-9 && hMh_sigma >= 0) ||
|
|
(hMh_sigma > -1e-9 && hMh_sigma <= 0)) {
|
|
assert(false);
|
|
return;
|
|
}
|
|
kalmanGain[0] = Mh[0] / hMh_sigma;
|
|
kalmanGain[1] = Mh[1] / hMh_sigma;
|
|
|
|
// Correction
|
|
// theta = theta + K*(dT - h*theta)
|
|
measureRes = frameDelayMS - (deltaFSBytes * _theta[0] + _theta[1]);
|
|
_theta[0] += kalmanGain[0] * measureRes;
|
|
_theta[1] += kalmanGain[1] * measureRes;
|
|
|
|
if (_theta[0] < _thetaLow) {
|
|
_theta[0] = _thetaLow;
|
|
}
|
|
|
|
// M = (I - K*h)*M
|
|
t00 = _thetaCov[0][0];
|
|
t01 = _thetaCov[0][1];
|
|
_thetaCov[0][0] = (1 - kalmanGain[0] * deltaFSBytes) * t00 -
|
|
kalmanGain[0] * _thetaCov[1][0];
|
|
_thetaCov[0][1] = (1 - kalmanGain[0] * deltaFSBytes) * t01 -
|
|
kalmanGain[0] * _thetaCov[1][1];
|
|
_thetaCov[1][0] = _thetaCov[1][0] * (1 - kalmanGain[1]) -
|
|
kalmanGain[1] * deltaFSBytes * t00;
|
|
_thetaCov[1][1] = _thetaCov[1][1] * (1 - kalmanGain[1]) -
|
|
kalmanGain[1] * deltaFSBytes * t01;
|
|
|
|
// Covariance matrix, must be positive semi-definite
|
|
assert(_thetaCov[0][0] + _thetaCov[1][1] >= 0 &&
|
|
_thetaCov[0][0] * _thetaCov[1][1] -
|
|
_thetaCov[0][1] * _thetaCov[1][0] >=
|
|
0 &&
|
|
_thetaCov[0][0] >= 0);
|
|
}
|
|
|
|
// Calculate difference in delay between a sample and the
|
|
// expected delay estimated by the Kalman filter
|
|
double VCMJitterEstimator::DeviationFromExpectedDelay(
|
|
int64_t frameDelayMS,
|
|
int32_t deltaFSBytes) const {
|
|
return frameDelayMS - (_theta[0] * deltaFSBytes + _theta[1]);
|
|
}
|
|
|
|
// Estimates the random jitter by calculating the variance of the
|
|
// sample distance from the line given by theta.
|
|
void VCMJitterEstimator::EstimateRandomJitter(double d_dT,
|
|
bool incompleteFrame) {
|
|
uint64_t now = clock_->TimeInMicroseconds();
|
|
if (_lastUpdateT != -1) {
|
|
fps_counter_.AddSample(now - _lastUpdateT);
|
|
}
|
|
_lastUpdateT = now;
|
|
|
|
if (_alphaCount == 0) {
|
|
assert(false);
|
|
return;
|
|
}
|
|
double alpha =
|
|
static_cast<double>(_alphaCount - 1) / static_cast<double>(_alphaCount);
|
|
_alphaCount++;
|
|
if (_alphaCount > _alphaCountMax)
|
|
_alphaCount = _alphaCountMax;
|
|
|
|
// In order to avoid a low frame rate stream to react slower to changes,
|
|
// scale the alpha weight relative a 30 fps stream.
|
|
double fps = GetFrameRate();
|
|
if (fps > 0.0) {
|
|
double rate_scale = 30.0 / fps;
|
|
// At startup, there can be a lot of noise in the fps estimate.
|
|
// Interpolate rate_scale linearly, from 1.0 at sample #1, to 30.0 / fps
|
|
// at sample #kStartupDelaySamples.
|
|
if (_alphaCount < kStartupDelaySamples) {
|
|
rate_scale =
|
|
(_alphaCount * rate_scale + (kStartupDelaySamples - _alphaCount)) /
|
|
kStartupDelaySamples;
|
|
}
|
|
alpha = pow(alpha, rate_scale);
|
|
}
|
|
|
|
double avgNoise = alpha * _avgNoise + (1 - alpha) * d_dT;
|
|
double varNoise =
|
|
alpha * _varNoise + (1 - alpha) * (d_dT - _avgNoise) * (d_dT - _avgNoise);
|
|
if (!incompleteFrame || varNoise > _varNoise) {
|
|
_avgNoise = avgNoise;
|
|
_varNoise = varNoise;
|
|
}
|
|
if (_varNoise < 1.0) {
|
|
// The variance should never be zero, since we might get
|
|
// stuck and consider all samples as outliers.
|
|
_varNoise = 1.0;
|
|
}
|
|
}
|
|
|
|
double VCMJitterEstimator::NoiseThreshold() const {
|
|
double noiseThreshold = _noiseStdDevs * sqrt(_varNoise) - _noiseStdDevOffset;
|
|
if (noiseThreshold < 1.0) {
|
|
noiseThreshold = 1.0;
|
|
}
|
|
return noiseThreshold;
|
|
}
|
|
|
|
// Calculates the current jitter estimate from the filtered estimates
|
|
double VCMJitterEstimator::CalculateEstimate() {
|
|
double ret = _theta[0] * (_maxFrameSize - _avgFrameSize) + NoiseThreshold();
|
|
|
|
// A very low estimate (or negative) is neglected
|
|
if (ret < 1.0) {
|
|
if (_prevEstimate <= 0.01) {
|
|
ret = 1.0;
|
|
} else {
|
|
ret = _prevEstimate;
|
|
}
|
|
}
|
|
if (ret > 10000.0) { // Sanity
|
|
ret = 10000.0;
|
|
}
|
|
_prevEstimate = ret;
|
|
return ret;
|
|
}
|
|
|
|
void VCMJitterEstimator::PostProcessEstimate() {
|
|
_filterJitterEstimate = CalculateEstimate();
|
|
}
|
|
|
|
void VCMJitterEstimator::UpdateRtt(int64_t rttMs) {
|
|
_rttFilter.Update(rttMs);
|
|
}
|
|
|
|
void VCMJitterEstimator::UpdateMaxFrameSize(uint32_t frameSizeBytes) {
|
|
if (_maxFrameSize < frameSizeBytes) {
|
|
_maxFrameSize = frameSizeBytes;
|
|
}
|
|
}
|
|
|
|
// Returns the current filtered estimate if available,
|
|
// otherwise tries to calculate an estimate.
|
|
int VCMJitterEstimator::GetJitterEstimate(double rttMultiplier) {
|
|
double jitterMS = CalculateEstimate() + OPERATING_SYSTEM_JITTER;
|
|
uint64_t now = clock_->TimeInMicroseconds();
|
|
|
|
if (now - _latestNackTimestamp > kNackCountTimeoutMs * 1000)
|
|
_nackCount = 0;
|
|
|
|
if (_filterJitterEstimate > jitterMS)
|
|
jitterMS = _filterJitterEstimate;
|
|
if (_nackCount >= _nackLimit)
|
|
jitterMS += _rttFilter.RttMs() * rttMultiplier;
|
|
|
|
static const double kJitterScaleLowThreshold = 5.0;
|
|
static const double kJitterScaleHighThreshold = 10.0;
|
|
double fps = GetFrameRate();
|
|
// Ignore jitter for very low fps streams.
|
|
if (fps < kJitterScaleLowThreshold) {
|
|
if (fps == 0.0) {
|
|
return rtc::checked_cast<int>(std::max(0.0, jitterMS) + 0.5);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Semi-low frame rate; scale by factor linearly interpolated from 0.0 at
|
|
// kJitterScaleLowThreshold to 1.0 at kJitterScaleHighThreshold.
|
|
if (fps < kJitterScaleHighThreshold) {
|
|
jitterMS = (1.0 / (kJitterScaleHighThreshold - kJitterScaleLowThreshold)) *
|
|
(fps - kJitterScaleLowThreshold) * jitterMS;
|
|
}
|
|
|
|
return rtc::checked_cast<int>(std::max(0.0, jitterMS) + 0.5);
|
|
}
|
|
|
|
double VCMJitterEstimator::GetFrameRate() const {
|
|
if (fps_counter_.ComputeMean() == 0.0)
|
|
return 0;
|
|
|
|
double fps = 1000000.0 / fps_counter_.ComputeMean();
|
|
// Sanity check.
|
|
assert(fps >= 0.0);
|
|
if (fps > kMaxFramerateEstimate) {
|
|
fps = kMaxFramerateEstimate;
|
|
}
|
|
return fps;
|
|
}
|
|
} // namespace webrtc
|