webrtc/modules/audio_processing/aec3/suppression_gain_unittest.cc
Per Åhgren 7ddd46386a Balancing the transparency in AEC3 between saturating and low echo paths
This CL balances the NLP tradeoff in AEC3 to properly handle the cases
when the echo path is so strong that it saturates the echo and when it
is so weak that the echo is very low compared to nearend.

Bug: webrtc:8411, webrtc:8412, chromium:775653
Change-Id: I5aff74dfadd51cac1ce71b1cb935d68a5be6918d
Reviewed-on: https://webrtc-review.googlesource.com/14120
Commit-Queue: Per Åhgren <peah@webrtc.org>
Reviewed-by: Per Åhgren <peah@webrtc.org>
Reviewed-by: Gustaf Ullberg <gustaf@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#20418}
2017-10-25 01:36:59 +00:00

136 lines
5.2 KiB
C++

/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/suppression_gain.h"
#include "modules/audio_processing/aec3/aec_state.h"
#include "modules/audio_processing/aec3/render_buffer.h"
#include "modules/audio_processing/aec3/subtractor.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "rtc_base/checks.h"
#include "system_wrappers/include/cpu_features_wrapper.h"
#include "test/gtest.h"
#include "typedefs.h" // NOLINT(build/include)
namespace webrtc {
namespace aec3 {
#if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID)
// Verifies that the check for non-null output gains works.
TEST(SuppressionGain, NullOutputGains) {
std::array<float, kFftLengthBy2Plus1> E2;
std::array<float, kFftLengthBy2Plus1> R2;
std::array<float, kFftLengthBy2Plus1> N2;
E2.fill(0.f);
R2.fill(0.f);
N2.fill(0.f);
float high_bands_gain;
AecState aec_state(EchoCanceller3Config{});
EXPECT_DEATH(SuppressionGain(EchoCanceller3Config{}, DetectOptimization())
.GetGain(E2, R2, N2, RenderSignalAnalyzer(), aec_state,
std::vector<std::vector<float>>(
3, std::vector<float>(kBlockSize, 0.f)),
&high_bands_gain, nullptr),
"");
}
#endif
// Does a sanity check that the gains are correctly computed.
TEST(SuppressionGain, BasicGainComputation) {
SuppressionGain suppression_gain(EchoCanceller3Config(),
DetectOptimization());
RenderSignalAnalyzer analyzer;
float high_bands_gain;
std::array<float, kFftLengthBy2Plus1> E2;
std::array<float, kFftLengthBy2Plus1> Y2;
std::array<float, kFftLengthBy2Plus1> R2;
std::array<float, kFftLengthBy2Plus1> N2;
std::array<float, kFftLengthBy2Plus1> g;
std::array<float, kBlockSize> s;
std::vector<std::vector<float>> x(1, std::vector<float>(kBlockSize, 0.f));
AecState aec_state(EchoCanceller3Config{});
ApmDataDumper data_dumper(42);
Subtractor subtractor(&data_dumper, DetectOptimization());
RenderBuffer render_buffer(
DetectOptimization(), 1,
std::max(kUnknownDelayRenderWindowSize, kAdaptiveFilterLength),
std::vector<size_t>(1, kAdaptiveFilterLength));
// Verify the functionality for forcing a zero gain.
E2.fill(1000000000.f);
R2.fill(10000000000000.f);
N2.fill(0.f);
s.fill(10.f);
aec_state.Update(subtractor.FilterFrequencyResponse(),
subtractor.FilterImpulseResponse(),
subtractor.ConvergedFilter(), rtc::Optional<size_t>(10),
render_buffer, E2, Y2, x[0], s, false);
suppression_gain.GetGain(E2, R2, N2, analyzer, aec_state, x, &high_bands_gain,
&g);
std::for_each(g.begin(), g.end(), [](float a) { EXPECT_FLOAT_EQ(0.f, a); });
EXPECT_FLOAT_EQ(0.f, high_bands_gain);
// Ensure that a strong noise is detected to mask any echoes.
E2.fill(10.f);
Y2.fill(10.f);
R2.fill(0.1f);
N2.fill(100.f);
// Ensure that the gain is no longer forced to zero.
for (int k = 0; k <= kNumBlocksPerSecond / 5 + 1; ++k) {
aec_state.Update(subtractor.FilterFrequencyResponse(),
subtractor.FilterImpulseResponse(),
subtractor.ConvergedFilter(), rtc::Optional<size_t>(10),
render_buffer, E2, Y2, x[0], s, false);
}
for (int k = 0; k < 100; ++k) {
aec_state.Update(subtractor.FilterFrequencyResponse(),
subtractor.FilterImpulseResponse(),
subtractor.ConvergedFilter(), rtc::Optional<size_t>(10),
render_buffer, E2, Y2, x[0], s, false);
suppression_gain.GetGain(E2, R2, N2, analyzer, aec_state, x,
&high_bands_gain, &g);
}
std::for_each(g.begin(), g.end(),
[](float a) { EXPECT_NEAR(1.f, a, 0.001); });
// Ensure that a strong nearend is detected to mask any echoes.
E2.fill(100.f);
Y2.fill(100.f);
R2.fill(0.1f);
N2.fill(0.f);
for (int k = 0; k < 100; ++k) {
aec_state.Update(subtractor.FilterFrequencyResponse(),
subtractor.FilterImpulseResponse(),
subtractor.ConvergedFilter(), rtc::Optional<size_t>(10),
render_buffer, E2, Y2, x[0], s, false);
suppression_gain.GetGain(E2, R2, N2, analyzer, aec_state, x,
&high_bands_gain, &g);
}
std::for_each(g.begin(), g.end(),
[](float a) { EXPECT_NEAR(1.f, a, 0.001); });
// Ensure that a strong echo is suppressed.
E2.fill(1000000000.f);
R2.fill(10000000000000.f);
N2.fill(0.f);
for (int k = 0; k < 10; ++k) {
suppression_gain.GetGain(E2, R2, N2, analyzer, aec_state, x,
&high_bands_gain, &g);
}
std::for_each(g.begin(), g.end(),
[](float a) { EXPECT_NEAR(0.f, a, 0.001); });
}
} // namespace aec3
} // namespace webrtc