mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-13 22:00:47 +01:00

Bug: webrtc:9822 Change-Id: I636f75de10851729825311ee5783e836f3b583cd Reviewed-on: https://webrtc-review.googlesource.com/c/101220 Commit-Queue: Minyue Li <minyue@webrtc.org> Reviewed-by: Henrik Lundin <henrik.lundin@webrtc.org> Cr-Commit-Position: refs/heads/master@{#24975}
517 lines
20 KiB
C++
517 lines
20 KiB
C++
/*
|
|
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/audio_coding/neteq/delay_manager.h"
|
|
|
|
#include <assert.h>
|
|
#include <math.h>
|
|
|
|
#include <algorithm> // max, min
|
|
#include <numeric>
|
|
|
|
#include "common_audio/signal_processing/include/signal_processing_library.h"
|
|
#include "modules/audio_coding/neteq/delay_peak_detector.h"
|
|
#include "modules/include/module_common_types.h"
|
|
#include "rtc_base/logging.h"
|
|
#include "rtc_base/numerics/safe_conversions.h"
|
|
#include "system_wrappers/include/field_trial.h"
|
|
|
|
namespace {
|
|
|
|
constexpr int kLimitProbability = 53687091; // 1/20 in Q30.
|
|
constexpr int kLimitProbabilityStreaming = 536871; // 1/2000 in Q30.
|
|
constexpr int kMaxStreamingPeakPeriodMs = 600000; // 10 minutes in ms.
|
|
constexpr int kCumulativeSumDrift = 2; // Drift term for cumulative sum
|
|
// |iat_cumulative_sum_|.
|
|
// Steady-state forgetting factor for |iat_vector_|, 0.9993 in Q15.
|
|
constexpr int kIatFactor_ = 32745;
|
|
constexpr int kMaxIat = 64; // Max inter-arrival time to register.
|
|
|
|
absl::optional<int> GetForcedLimitProbability() {
|
|
constexpr char kForceTargetDelayPercentileFieldTrial[] =
|
|
"WebRTC-Audio-NetEqForceTargetDelayPercentile";
|
|
const bool use_forced_target_delay_percentile =
|
|
webrtc::field_trial::IsEnabled(kForceTargetDelayPercentileFieldTrial);
|
|
if (use_forced_target_delay_percentile) {
|
|
const std::string field_trial_string = webrtc::field_trial::FindFullName(
|
|
kForceTargetDelayPercentileFieldTrial);
|
|
double percentile = -1.0;
|
|
if (sscanf(field_trial_string.c_str(), "Enabled-%lf", &percentile) == 1 &&
|
|
percentile >= 0.0 && percentile <= 100.0) {
|
|
return absl::make_optional<int>(static_cast<int>(
|
|
(1 << 30) * (100.0 - percentile) / 100.0 + 0.5)); // in Q30.
|
|
} else {
|
|
RTC_LOG(LS_WARNING) << "Invalid parameter for "
|
|
<< kForceTargetDelayPercentileFieldTrial
|
|
<< ", ignored.";
|
|
}
|
|
}
|
|
return absl::nullopt;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
namespace webrtc {
|
|
|
|
DelayManager::DelayManager(size_t max_packets_in_buffer,
|
|
DelayPeakDetector* peak_detector,
|
|
const TickTimer* tick_timer)
|
|
: first_packet_received_(false),
|
|
max_packets_in_buffer_(max_packets_in_buffer),
|
|
iat_vector_(kMaxIat + 1, 0),
|
|
iat_factor_(0),
|
|
tick_timer_(tick_timer),
|
|
base_target_level_(4), // In Q0 domain.
|
|
target_level_(base_target_level_ << 8), // In Q8 domain.
|
|
packet_len_ms_(0),
|
|
streaming_mode_(false),
|
|
last_seq_no_(0),
|
|
last_timestamp_(0),
|
|
minimum_delay_ms_(0),
|
|
maximum_delay_ms_(target_level_),
|
|
iat_cumulative_sum_(0),
|
|
max_iat_cumulative_sum_(0),
|
|
peak_detector_(*peak_detector),
|
|
last_pack_cng_or_dtmf_(1),
|
|
frame_length_change_experiment_(
|
|
field_trial::IsEnabled("WebRTC-Audio-NetEqFramelengthExperiment")),
|
|
forced_limit_probability_(GetForcedLimitProbability()) {
|
|
assert(peak_detector); // Should never be NULL.
|
|
|
|
Reset();
|
|
}
|
|
|
|
DelayManager::~DelayManager() {}
|
|
|
|
const DelayManager::IATVector& DelayManager::iat_vector() const {
|
|
return iat_vector_;
|
|
}
|
|
|
|
// Set the histogram vector to an exponentially decaying distribution
|
|
// iat_vector_[i] = 0.5^(i+1), i = 0, 1, 2, ...
|
|
// iat_vector_ is in Q30.
|
|
void DelayManager::ResetHistogram() {
|
|
// Set temp_prob to (slightly more than) 1 in Q14. This ensures that the sum
|
|
// of iat_vector_ is 1.
|
|
uint16_t temp_prob = 0x4002; // 16384 + 2 = 100000000000010 binary.
|
|
IATVector::iterator it = iat_vector_.begin();
|
|
for (; it < iat_vector_.end(); it++) {
|
|
temp_prob >>= 1;
|
|
(*it) = temp_prob << 16;
|
|
}
|
|
base_target_level_ = 4;
|
|
target_level_ = base_target_level_ << 8;
|
|
}
|
|
|
|
int DelayManager::Update(uint16_t sequence_number,
|
|
uint32_t timestamp,
|
|
int sample_rate_hz) {
|
|
if (sample_rate_hz <= 0) {
|
|
return -1;
|
|
}
|
|
|
|
if (!first_packet_received_) {
|
|
// Prepare for next packet arrival.
|
|
packet_iat_stopwatch_ = tick_timer_->GetNewStopwatch();
|
|
last_seq_no_ = sequence_number;
|
|
last_timestamp_ = timestamp;
|
|
first_packet_received_ = true;
|
|
return 0;
|
|
}
|
|
|
|
// Try calculating packet length from current and previous timestamps.
|
|
int packet_len_ms;
|
|
if (!IsNewerTimestamp(timestamp, last_timestamp_) ||
|
|
!IsNewerSequenceNumber(sequence_number, last_seq_no_)) {
|
|
// Wrong timestamp or sequence order; use stored value.
|
|
packet_len_ms = packet_len_ms_;
|
|
} else {
|
|
// Calculate timestamps per packet and derive packet length in ms.
|
|
int64_t packet_len_samp =
|
|
static_cast<uint32_t>(timestamp - last_timestamp_) /
|
|
static_cast<uint16_t>(sequence_number - last_seq_no_);
|
|
packet_len_ms =
|
|
rtc::saturated_cast<int>(1000 * packet_len_samp / sample_rate_hz);
|
|
}
|
|
|
|
if (packet_len_ms > 0) {
|
|
// Cannot update statistics unless |packet_len_ms| is valid.
|
|
// Calculate inter-arrival time (IAT) in integer "packet times"
|
|
// (rounding down). This is the value used as index to the histogram
|
|
// vector |iat_vector_|.
|
|
int iat_packets = packet_iat_stopwatch_->ElapsedMs() / packet_len_ms;
|
|
|
|
if (streaming_mode_) {
|
|
UpdateCumulativeSums(packet_len_ms, sequence_number);
|
|
}
|
|
|
|
// Check for discontinuous packet sequence and re-ordering.
|
|
if (IsNewerSequenceNumber(sequence_number, last_seq_no_ + 1)) {
|
|
// Compensate for gap in the sequence numbers. Reduce IAT with the
|
|
// expected extra time due to lost packets, but ensure that the IAT is
|
|
// not negative.
|
|
iat_packets -= static_cast<uint16_t>(sequence_number - last_seq_no_ - 1);
|
|
iat_packets = std::max(iat_packets, 0);
|
|
} else if (!IsNewerSequenceNumber(sequence_number, last_seq_no_)) {
|
|
iat_packets += static_cast<uint16_t>(last_seq_no_ + 1 - sequence_number);
|
|
}
|
|
|
|
// Saturate IAT at maximum value.
|
|
const int max_iat = kMaxIat;
|
|
iat_packets = std::min(iat_packets, max_iat);
|
|
UpdateHistogram(iat_packets);
|
|
// Calculate new |target_level_| based on updated statistics.
|
|
target_level_ = CalculateTargetLevel(iat_packets);
|
|
if (streaming_mode_) {
|
|
target_level_ = std::max(target_level_, max_iat_cumulative_sum_);
|
|
}
|
|
|
|
LimitTargetLevel();
|
|
} // End if (packet_len_ms > 0).
|
|
|
|
// Prepare for next packet arrival.
|
|
packet_iat_stopwatch_ = tick_timer_->GetNewStopwatch();
|
|
last_seq_no_ = sequence_number;
|
|
last_timestamp_ = timestamp;
|
|
return 0;
|
|
}
|
|
|
|
void DelayManager::UpdateCumulativeSums(int packet_len_ms,
|
|
uint16_t sequence_number) {
|
|
// Calculate IAT in Q8, including fractions of a packet (i.e., more
|
|
// accurate than |iat_packets|.
|
|
int iat_packets_q8 =
|
|
(packet_iat_stopwatch_->ElapsedMs() << 8) / packet_len_ms;
|
|
// Calculate cumulative sum IAT with sequence number compensation. The sum
|
|
// is zero if there is no clock-drift.
|
|
iat_cumulative_sum_ +=
|
|
(iat_packets_q8 -
|
|
(static_cast<int>(sequence_number - last_seq_no_) << 8));
|
|
// Subtract drift term.
|
|
iat_cumulative_sum_ -= kCumulativeSumDrift;
|
|
// Ensure not negative.
|
|
iat_cumulative_sum_ = std::max(iat_cumulative_sum_, 0);
|
|
if (iat_cumulative_sum_ > max_iat_cumulative_sum_) {
|
|
// Found a new maximum.
|
|
max_iat_cumulative_sum_ = iat_cumulative_sum_;
|
|
max_iat_stopwatch_ = tick_timer_->GetNewStopwatch();
|
|
}
|
|
if (max_iat_stopwatch_->ElapsedMs() > kMaxStreamingPeakPeriodMs) {
|
|
// Too long since the last maximum was observed; decrease max value.
|
|
max_iat_cumulative_sum_ -= kCumulativeSumDrift;
|
|
}
|
|
}
|
|
|
|
// Each element in the vector is first multiplied by the forgetting factor
|
|
// |iat_factor_|. Then the vector element indicated by |iat_packets| is then
|
|
// increased (additive) by 1 - |iat_factor_|. This way, the probability of
|
|
// |iat_packets| is slightly increased, while the sum of the histogram remains
|
|
// constant (=1).
|
|
// Due to inaccuracies in the fixed-point arithmetic, the histogram may no
|
|
// longer sum up to 1 (in Q30) after the update. To correct this, a correction
|
|
// term is added or subtracted from the first element (or elements) of the
|
|
// vector.
|
|
// The forgetting factor |iat_factor_| is also updated. When the DelayManager
|
|
// is reset, the factor is set to 0 to facilitate rapid convergence in the
|
|
// beginning. With each update of the histogram, the factor is increased towards
|
|
// the steady-state value |kIatFactor_|.
|
|
void DelayManager::UpdateHistogram(size_t iat_packets) {
|
|
assert(iat_packets < iat_vector_.size());
|
|
int vector_sum = 0; // Sum up the vector elements as they are processed.
|
|
// Multiply each element in |iat_vector_| with |iat_factor_|.
|
|
for (IATVector::iterator it = iat_vector_.begin(); it != iat_vector_.end();
|
|
++it) {
|
|
*it = (static_cast<int64_t>(*it) * iat_factor_) >> 15;
|
|
vector_sum += *it;
|
|
}
|
|
|
|
// Increase the probability for the currently observed inter-arrival time
|
|
// by 1 - |iat_factor_|. The factor is in Q15, |iat_vector_| in Q30.
|
|
// Thus, left-shift 15 steps to obtain result in Q30.
|
|
iat_vector_[iat_packets] += (32768 - iat_factor_) << 15;
|
|
vector_sum += (32768 - iat_factor_) << 15; // Add to vector sum.
|
|
|
|
// |iat_vector_| should sum up to 1 (in Q30), but it may not due to
|
|
// fixed-point rounding errors.
|
|
vector_sum -= 1 << 30; // Should be zero. Compensate if not.
|
|
if (vector_sum != 0) {
|
|
// Modify a few values early in |iat_vector_|.
|
|
int flip_sign = vector_sum > 0 ? -1 : 1;
|
|
IATVector::iterator it = iat_vector_.begin();
|
|
while (it != iat_vector_.end() && abs(vector_sum) > 0) {
|
|
// Add/subtract 1/16 of the element, but not more than |vector_sum|.
|
|
int correction = flip_sign * std::min(abs(vector_sum), (*it) >> 4);
|
|
*it += correction;
|
|
vector_sum += correction;
|
|
++it;
|
|
}
|
|
}
|
|
assert(vector_sum == 0); // Verify that the above is correct.
|
|
|
|
// Update |iat_factor_| (changes only during the first seconds after a reset).
|
|
// The factor converges to |kIatFactor_|.
|
|
iat_factor_ += (kIatFactor_ - iat_factor_ + 3) >> 2;
|
|
}
|
|
|
|
// Enforces upper and lower limits for |target_level_|. The upper limit is
|
|
// chosen to be minimum of i) 75% of |max_packets_in_buffer_|, to leave some
|
|
// headroom for natural fluctuations around the target, and ii) equivalent of
|
|
// |maximum_delay_ms_| in packets. Note that in practice, if no
|
|
// |maximum_delay_ms_| is specified, this does not have any impact, since the
|
|
// target level is far below the buffer capacity in all reasonable cases.
|
|
// The lower limit is equivalent of |minimum_delay_ms_| in packets. We update
|
|
// |least_required_level_| while the above limits are applied.
|
|
// TODO(hlundin): Move this check to the buffer logistics class.
|
|
void DelayManager::LimitTargetLevel() {
|
|
if (packet_len_ms_ > 0 && minimum_delay_ms_ > 0) {
|
|
int minimum_delay_packet_q8 = (minimum_delay_ms_ << 8) / packet_len_ms_;
|
|
target_level_ = std::max(target_level_, minimum_delay_packet_q8);
|
|
}
|
|
|
|
if (maximum_delay_ms_ > 0 && packet_len_ms_ > 0) {
|
|
int maximum_delay_packet_q8 = (maximum_delay_ms_ << 8) / packet_len_ms_;
|
|
target_level_ = std::min(target_level_, maximum_delay_packet_q8);
|
|
}
|
|
|
|
// Shift to Q8, then 75%.;
|
|
int max_buffer_packets_q8 =
|
|
static_cast<int>((3 * (max_packets_in_buffer_ << 8)) / 4);
|
|
target_level_ = std::min(target_level_, max_buffer_packets_q8);
|
|
|
|
// Sanity check, at least 1 packet (in Q8).
|
|
target_level_ = std::max(target_level_, 1 << 8);
|
|
}
|
|
|
|
int DelayManager::CalculateTargetLevel(int iat_packets) {
|
|
int limit_probability = forced_limit_probability_.value_or(kLimitProbability);
|
|
if (streaming_mode_) {
|
|
limit_probability = kLimitProbabilityStreaming;
|
|
}
|
|
|
|
// Calculate target buffer level from inter-arrival time histogram.
|
|
// Find the |iat_index| for which the probability of observing an
|
|
// inter-arrival time larger than or equal to |iat_index| is less than or
|
|
// equal to |limit_probability|. The sought probability is estimated using
|
|
// the histogram as the reverse cumulant PDF, i.e., the sum of elements from
|
|
// the end up until |iat_index|. Now, since the sum of all elements is 1
|
|
// (in Q30) by definition, and since the solution is often a low value for
|
|
// |iat_index|, it is more efficient to start with |sum| = 1 and subtract
|
|
// elements from the start of the histogram.
|
|
size_t index = 0; // Start from the beginning of |iat_vector_|.
|
|
int sum = 1 << 30; // Assign to 1 in Q30.
|
|
sum -= iat_vector_[index]; // Ensure that target level is >= 1.
|
|
|
|
do {
|
|
// Subtract the probabilities one by one until the sum is no longer greater
|
|
// than limit_probability.
|
|
++index;
|
|
sum -= iat_vector_[index];
|
|
} while ((sum > limit_probability) && (index < iat_vector_.size() - 1));
|
|
|
|
// This is the base value for the target buffer level.
|
|
int target_level = static_cast<int>(index);
|
|
base_target_level_ = static_cast<int>(index);
|
|
|
|
// Update detector for delay peaks.
|
|
bool delay_peak_found = peak_detector_.Update(iat_packets, target_level);
|
|
if (delay_peak_found) {
|
|
target_level = std::max(target_level, peak_detector_.MaxPeakHeight());
|
|
}
|
|
|
|
// Sanity check. |target_level| must be strictly positive.
|
|
target_level = std::max(target_level, 1);
|
|
// Scale to Q8 and assign to member variable.
|
|
target_level_ = target_level << 8;
|
|
return target_level_;
|
|
}
|
|
|
|
int DelayManager::SetPacketAudioLength(int length_ms) {
|
|
if (length_ms <= 0) {
|
|
RTC_LOG_F(LS_ERROR) << "length_ms = " << length_ms;
|
|
return -1;
|
|
}
|
|
if (frame_length_change_experiment_ && packet_len_ms_ != length_ms) {
|
|
iat_vector_ = ScaleHistogram(iat_vector_, packet_len_ms_, length_ms);
|
|
}
|
|
|
|
packet_len_ms_ = length_ms;
|
|
peak_detector_.SetPacketAudioLength(packet_len_ms_);
|
|
packet_iat_stopwatch_ = tick_timer_->GetNewStopwatch();
|
|
last_pack_cng_or_dtmf_ = 1; // TODO(hlundin): Legacy. Remove?
|
|
return 0;
|
|
}
|
|
|
|
void DelayManager::Reset() {
|
|
packet_len_ms_ = 0; // Packet size unknown.
|
|
streaming_mode_ = false;
|
|
peak_detector_.Reset();
|
|
ResetHistogram(); // Resets target levels too.
|
|
iat_factor_ = 0; // Adapt the histogram faster for the first few packets.
|
|
packet_iat_stopwatch_ = tick_timer_->GetNewStopwatch();
|
|
max_iat_stopwatch_ = tick_timer_->GetNewStopwatch();
|
|
iat_cumulative_sum_ = 0;
|
|
max_iat_cumulative_sum_ = 0;
|
|
last_pack_cng_or_dtmf_ = 1;
|
|
}
|
|
|
|
double DelayManager::EstimatedClockDriftPpm() const {
|
|
double sum = 0.0;
|
|
// Calculate the expected value based on the probabilities in |iat_vector_|.
|
|
for (size_t i = 0; i < iat_vector_.size(); ++i) {
|
|
sum += static_cast<double>(iat_vector_[i]) * i;
|
|
}
|
|
// The probabilities in |iat_vector_| are in Q30. Divide by 1 << 30 to convert
|
|
// to Q0; subtract the nominal inter-arrival time (1) to make a zero
|
|
// clockdrift represent as 0; mulitply by 1000000 to produce parts-per-million
|
|
// (ppm).
|
|
return (sum / (1 << 30) - 1) * 1e6;
|
|
}
|
|
|
|
bool DelayManager::PeakFound() const {
|
|
return peak_detector_.peak_found();
|
|
}
|
|
|
|
void DelayManager::ResetPacketIatCount() {
|
|
packet_iat_stopwatch_ = tick_timer_->GetNewStopwatch();
|
|
}
|
|
|
|
// Note that |low_limit| and |higher_limit| are not assigned to
|
|
// |minimum_delay_ms_| and |maximum_delay_ms_| defined by the client of this
|
|
// class. They are computed from |target_level_| and used for decision making.
|
|
void DelayManager::BufferLimits(int* lower_limit, int* higher_limit) const {
|
|
if (!lower_limit || !higher_limit) {
|
|
RTC_LOG_F(LS_ERROR) << "NULL pointers supplied as input";
|
|
assert(false);
|
|
return;
|
|
}
|
|
|
|
int window_20ms = 0x7FFF; // Default large value for legacy bit-exactness.
|
|
if (packet_len_ms_ > 0) {
|
|
window_20ms = (20 << 8) / packet_len_ms_;
|
|
}
|
|
|
|
// |target_level_| is in Q8 already.
|
|
*lower_limit = (target_level_ * 3) / 4;
|
|
// |higher_limit| is equal to |target_level_|, but should at
|
|
// least be 20 ms higher than |lower_limit_|.
|
|
*higher_limit = std::max(target_level_, *lower_limit + window_20ms);
|
|
}
|
|
|
|
int DelayManager::TargetLevel() const {
|
|
return target_level_;
|
|
}
|
|
|
|
void DelayManager::LastDecodedWasCngOrDtmf(bool it_was) {
|
|
if (it_was) {
|
|
last_pack_cng_or_dtmf_ = 1;
|
|
} else if (last_pack_cng_or_dtmf_ != 0) {
|
|
last_pack_cng_or_dtmf_ = -1;
|
|
}
|
|
}
|
|
|
|
void DelayManager::RegisterEmptyPacket() {
|
|
++last_seq_no_;
|
|
}
|
|
|
|
DelayManager::IATVector DelayManager::ScaleHistogram(const IATVector& histogram,
|
|
int old_packet_length,
|
|
int new_packet_length) {
|
|
if (old_packet_length == 0) {
|
|
// If we don't know the previous frame length, don't make any changes to the
|
|
// histogram.
|
|
return histogram;
|
|
}
|
|
RTC_DCHECK_GT(new_packet_length, 0);
|
|
RTC_DCHECK_EQ(old_packet_length % 10, 0);
|
|
RTC_DCHECK_EQ(new_packet_length % 10, 0);
|
|
IATVector new_histogram(histogram.size(), 0);
|
|
int64_t acc = 0;
|
|
int time_counter = 0;
|
|
size_t new_histogram_idx = 0;
|
|
for (size_t i = 0; i < histogram.size(); i++) {
|
|
acc += histogram[i];
|
|
time_counter += old_packet_length;
|
|
// The bins should be scaled, to ensure the histogram still sums to one.
|
|
const int64_t scaled_acc = acc * new_packet_length / time_counter;
|
|
int64_t actually_used_acc = 0;
|
|
while (time_counter >= new_packet_length) {
|
|
const int64_t old_histogram_val = new_histogram[new_histogram_idx];
|
|
new_histogram[new_histogram_idx] =
|
|
rtc::saturated_cast<int>(old_histogram_val + scaled_acc);
|
|
actually_used_acc += new_histogram[new_histogram_idx] - old_histogram_val;
|
|
new_histogram_idx =
|
|
std::min(new_histogram_idx + 1, new_histogram.size() - 1);
|
|
time_counter -= new_packet_length;
|
|
}
|
|
// Only subtract the part that was succesfully written to the new histogram.
|
|
acc -= actually_used_acc;
|
|
}
|
|
// If there is anything left in acc (due to rounding errors), add it to the
|
|
// last bin. If we cannot add everything to the last bin we need to add as
|
|
// much as possible to the bins after the last bin (this is only possible
|
|
// when compressing a histogram).
|
|
while (acc > 0 && new_histogram_idx < new_histogram.size()) {
|
|
const int64_t old_histogram_val = new_histogram[new_histogram_idx];
|
|
new_histogram[new_histogram_idx] =
|
|
rtc::saturated_cast<int>(old_histogram_val + acc);
|
|
acc -= new_histogram[new_histogram_idx] - old_histogram_val;
|
|
new_histogram_idx++;
|
|
}
|
|
RTC_DCHECK_EQ(histogram.size(), new_histogram.size());
|
|
if (acc == 0) {
|
|
// If acc is non-zero, we were not able to add everything to the new
|
|
// histogram, so this check will not hold.
|
|
RTC_DCHECK_EQ(accumulate(histogram.begin(), histogram.end(), 0ll),
|
|
accumulate(new_histogram.begin(), new_histogram.end(), 0ll));
|
|
}
|
|
return new_histogram;
|
|
}
|
|
|
|
bool DelayManager::SetMinimumDelay(int delay_ms) {
|
|
// Minimum delay shouldn't be more than maximum delay, if any maximum is set.
|
|
// Also, if possible check |delay| to less than 75% of
|
|
// |max_packets_in_buffer_|.
|
|
if ((maximum_delay_ms_ > 0 && delay_ms > maximum_delay_ms_) ||
|
|
(packet_len_ms_ > 0 &&
|
|
delay_ms >
|
|
static_cast<int>(3 * max_packets_in_buffer_ * packet_len_ms_ / 4))) {
|
|
return false;
|
|
}
|
|
minimum_delay_ms_ = delay_ms;
|
|
return true;
|
|
}
|
|
|
|
bool DelayManager::SetMaximumDelay(int delay_ms) {
|
|
if (delay_ms == 0) {
|
|
// Zero input unsets the maximum delay.
|
|
maximum_delay_ms_ = 0;
|
|
return true;
|
|
} else if (delay_ms < minimum_delay_ms_ || delay_ms < packet_len_ms_) {
|
|
// Maximum delay shouldn't be less than minimum delay or less than a packet.
|
|
return false;
|
|
}
|
|
maximum_delay_ms_ = delay_ms;
|
|
return true;
|
|
}
|
|
|
|
int DelayManager::base_target_level() const {
|
|
return base_target_level_;
|
|
}
|
|
void DelayManager::set_streaming_mode(bool value) {
|
|
streaming_mode_ = value;
|
|
}
|
|
int DelayManager::last_pack_cng_or_dtmf() const {
|
|
return last_pack_cng_or_dtmf_;
|
|
}
|
|
|
|
void DelayManager::set_last_pack_cng_or_dtmf(int value) {
|
|
last_pack_cng_or_dtmf_ = value;
|
|
}
|
|
} // namespace webrtc
|