webrtc/modules/audio_processing/ns/noise_suppressor.cc
Per Åhgren 15179a9986 Allowing reduced computations in the noise suppressor when the output is not used
This CL adds functionality in the noise suppressor that allows the
computational complexity to be reduced when the output of APM is not used.

Bug: b/177830919
Change-Id: I849351ba9559fae770e4667d78e38abde5230eed
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/211342
Reviewed-by: Gustaf Ullberg <gustaf@webrtc.org>
Commit-Queue: Per Åhgren <peah@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#33477}
2021-03-16 09:28:42 +00:00

555 lines
22 KiB
C++

/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/ns/noise_suppressor.h"
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <algorithm>
#include "modules/audio_processing/ns/fast_math.h"
#include "rtc_base/checks.h"
namespace webrtc {
namespace {
// Maps sample rate to number of bands.
size_t NumBandsForRate(size_t sample_rate_hz) {
RTC_DCHECK(sample_rate_hz == 16000 || sample_rate_hz == 32000 ||
sample_rate_hz == 48000);
return sample_rate_hz / 16000;
}
// Maximum number of channels for which the channel data is stored on
// the stack. If the number of channels are larger than this, they are stored
// using scratch memory that is pre-allocated on the heap. The reason for this
// partitioning is not to waste heap space for handling the more common numbers
// of channels, while at the same time not limiting the support for higher
// numbers of channels by enforcing the channel data to be stored on the
// stack using a fixed maximum value.
constexpr size_t kMaxNumChannelsOnStack = 2;
// Chooses the number of channels to store on the heap when that is required due
// to the number of channels being larger than the pre-defined number
// of channels to store on the stack.
size_t NumChannelsOnHeap(size_t num_channels) {
return num_channels > kMaxNumChannelsOnStack ? num_channels : 0;
}
// Hybrib Hanning and flat window for the filterbank.
constexpr std::array<float, 96> kBlocks160w256FirstHalf = {
0.00000000f, 0.01636173f, 0.03271908f, 0.04906767f, 0.06540313f,
0.08172107f, 0.09801714f, 0.11428696f, 0.13052619f, 0.14673047f,
0.16289547f, 0.17901686f, 0.19509032f, 0.21111155f, 0.22707626f,
0.24298018f, 0.25881905f, 0.27458862f, 0.29028468f, 0.30590302f,
0.32143947f, 0.33688985f, 0.35225005f, 0.36751594f, 0.38268343f,
0.39774847f, 0.41270703f, 0.42755509f, 0.44228869f, 0.45690388f,
0.47139674f, 0.48576339f, 0.50000000f, 0.51410274f, 0.52806785f,
0.54189158f, 0.55557023f, 0.56910015f, 0.58247770f, 0.59569930f,
0.60876143f, 0.62166057f, 0.63439328f, 0.64695615f, 0.65934582f,
0.67155895f, 0.68359230f, 0.69544264f, 0.70710678f, 0.71858162f,
0.72986407f, 0.74095113f, 0.75183981f, 0.76252720f, 0.77301045f,
0.78328675f, 0.79335334f, 0.80320753f, 0.81284668f, 0.82226822f,
0.83146961f, 0.84044840f, 0.84920218f, 0.85772861f, 0.86602540f,
0.87409034f, 0.88192126f, 0.88951608f, 0.89687274f, 0.90398929f,
0.91086382f, 0.91749450f, 0.92387953f, 0.93001722f, 0.93590593f,
0.94154407f, 0.94693013f, 0.95206268f, 0.95694034f, 0.96156180f,
0.96592583f, 0.97003125f, 0.97387698f, 0.97746197f, 0.98078528f,
0.98384601f, 0.98664333f, 0.98917651f, 0.99144486f, 0.99344778f,
0.99518473f, 0.99665524f, 0.99785892f, 0.99879546f, 0.99946459f,
0.99986614f};
// Applies the filterbank window to a buffer.
void ApplyFilterBankWindow(rtc::ArrayView<float, kFftSize> x) {
for (size_t i = 0; i < 96; ++i) {
x[i] = kBlocks160w256FirstHalf[i] * x[i];
}
for (size_t i = 161, k = 95; i < kFftSize; ++i, --k) {
RTC_DCHECK_NE(0, k);
x[i] = kBlocks160w256FirstHalf[k] * x[i];
}
}
// Extends a frame with previous data.
void FormExtendedFrame(rtc::ArrayView<const float, kNsFrameSize> frame,
rtc::ArrayView<float, kFftSize - kNsFrameSize> old_data,
rtc::ArrayView<float, kFftSize> extended_frame) {
std::copy(old_data.begin(), old_data.end(), extended_frame.begin());
std::copy(frame.begin(), frame.end(),
extended_frame.begin() + old_data.size());
std::copy(extended_frame.end() - old_data.size(), extended_frame.end(),
old_data.begin());
}
// Uses overlap-and-add to produce an output frame.
void OverlapAndAdd(rtc::ArrayView<const float, kFftSize> extended_frame,
rtc::ArrayView<float, kOverlapSize> overlap_memory,
rtc::ArrayView<float, kNsFrameSize> output_frame) {
for (size_t i = 0; i < kOverlapSize; ++i) {
output_frame[i] = overlap_memory[i] + extended_frame[i];
}
std::copy(extended_frame.begin() + kOverlapSize,
extended_frame.begin() + kNsFrameSize,
output_frame.begin() + kOverlapSize);
std::copy(extended_frame.begin() + kNsFrameSize, extended_frame.end(),
overlap_memory.begin());
}
// Produces a delayed frame.
void DelaySignal(rtc::ArrayView<const float, kNsFrameSize> frame,
rtc::ArrayView<float, kFftSize - kNsFrameSize> delay_buffer,
rtc::ArrayView<float, kNsFrameSize> delayed_frame) {
constexpr size_t kSamplesFromFrame = kNsFrameSize - (kFftSize - kNsFrameSize);
std::copy(delay_buffer.begin(), delay_buffer.end(), delayed_frame.begin());
std::copy(frame.begin(), frame.begin() + kSamplesFromFrame,
delayed_frame.begin() + delay_buffer.size());
std::copy(frame.begin() + kSamplesFromFrame, frame.end(),
delay_buffer.begin());
}
// Computes the energy of an extended frame.
float ComputeEnergyOfExtendedFrame(rtc::ArrayView<const float, kFftSize> x) {
float energy = 0.f;
for (float x_k : x) {
energy += x_k * x_k;
}
return energy;
}
// Computes the energy of an extended frame based on its subcomponents.
float ComputeEnergyOfExtendedFrame(
rtc::ArrayView<const float, kNsFrameSize> frame,
rtc::ArrayView<float, kFftSize - kNsFrameSize> old_data) {
float energy = 0.f;
for (float v : old_data) {
energy += v * v;
}
for (float v : frame) {
energy += v * v;
}
return energy;
}
// Computes the magnitude spectrum based on an FFT output.
void ComputeMagnitudeSpectrum(
rtc::ArrayView<const float, kFftSize> real,
rtc::ArrayView<const float, kFftSize> imag,
rtc::ArrayView<float, kFftSizeBy2Plus1> signal_spectrum) {
signal_spectrum[0] = fabsf(real[0]) + 1.f;
signal_spectrum[kFftSizeBy2Plus1 - 1] =
fabsf(real[kFftSizeBy2Plus1 - 1]) + 1.f;
for (size_t i = 1; i < kFftSizeBy2Plus1 - 1; ++i) {
signal_spectrum[i] =
SqrtFastApproximation(real[i] * real[i] + imag[i] * imag[i]) + 1.f;
}
}
// Compute prior and post SNR.
void ComputeSnr(rtc::ArrayView<const float, kFftSizeBy2Plus1> filter,
rtc::ArrayView<const float> prev_signal_spectrum,
rtc::ArrayView<const float> signal_spectrum,
rtc::ArrayView<const float> prev_noise_spectrum,
rtc::ArrayView<const float> noise_spectrum,
rtc::ArrayView<float> prior_snr,
rtc::ArrayView<float> post_snr) {
for (size_t i = 0; i < kFftSizeBy2Plus1; ++i) {
// Previous post SNR.
// Previous estimate: based on previous frame with gain filter.
float prev_estimate = prev_signal_spectrum[i] /
(prev_noise_spectrum[i] + 0.0001f) * filter[i];
// Post SNR.
if (signal_spectrum[i] > noise_spectrum[i]) {
post_snr[i] = signal_spectrum[i] / (noise_spectrum[i] + 0.0001f) - 1.f;
} else {
post_snr[i] = 0.f;
}
// The directed decision estimate of the prior SNR is a sum the current and
// previous estimates.
prior_snr[i] = 0.98f * prev_estimate + (1.f - 0.98f) * post_snr[i];
}
}
// Computes the attenuating gain for the noise suppression of the upper bands.
float ComputeUpperBandsGain(
float minimum_attenuating_gain,
rtc::ArrayView<const float, kFftSizeBy2Plus1> filter,
rtc::ArrayView<const float> speech_probability,
rtc::ArrayView<const float, kFftSizeBy2Plus1> prev_analysis_signal_spectrum,
rtc::ArrayView<const float, kFftSizeBy2Plus1> signal_spectrum) {
// Average speech prob and filter gain for the end of the lowest band.
constexpr int kNumAvgBins = 32;
constexpr float kOneByNumAvgBins = 1.f / kNumAvgBins;
float avg_prob_speech = 0.f;
float avg_filter_gain = 0.f;
for (size_t i = kFftSizeBy2Plus1 - kNumAvgBins - 1; i < kFftSizeBy2Plus1 - 1;
i++) {
avg_prob_speech += speech_probability[i];
avg_filter_gain += filter[i];
}
avg_prob_speech = avg_prob_speech * kOneByNumAvgBins;
avg_filter_gain = avg_filter_gain * kOneByNumAvgBins;
// If the speech was suppressed by a component between Analyze and Process, an
// example being by an AEC, it should not be considered speech for the purpose
// of high band suppression. To that end, the speech probability is scaled
// accordingly.
float sum_analysis_spectrum = 0.f;
float sum_processing_spectrum = 0.f;
for (size_t i = 0; i < kFftSizeBy2Plus1; ++i) {
sum_analysis_spectrum += prev_analysis_signal_spectrum[i];
sum_processing_spectrum += signal_spectrum[i];
}
// The magnitude spectrum computation enforces the spectrum to be strictly
// positive.
RTC_DCHECK_GT(sum_analysis_spectrum, 0.f);
avg_prob_speech *= sum_processing_spectrum / sum_analysis_spectrum;
// Compute gain based on speech probability.
float gain =
0.5f * (1.f + static_cast<float>(tanh(2.f * avg_prob_speech - 1.f)));
// Combine gain with low band gain.
if (avg_prob_speech >= 0.5f) {
gain = 0.25f * gain + 0.75f * avg_filter_gain;
} else {
gain = 0.5f * gain + 0.5f * avg_filter_gain;
}
// Make sure gain is within flooring range.
return std::min(std::max(gain, minimum_attenuating_gain), 1.f);
}
} // namespace
NoiseSuppressor::ChannelState::ChannelState(
const SuppressionParams& suppression_params,
size_t num_bands)
: wiener_filter(suppression_params),
noise_estimator(suppression_params),
process_delay_memory(num_bands > 1 ? num_bands - 1 : 0) {
analyze_analysis_memory.fill(0.f);
prev_analysis_signal_spectrum.fill(1.f);
process_analysis_memory.fill(0.f);
process_synthesis_memory.fill(0.f);
for (auto& d : process_delay_memory) {
d.fill(0.f);
}
}
NoiseSuppressor::NoiseSuppressor(const NsConfig& config,
size_t sample_rate_hz,
size_t num_channels)
: num_bands_(NumBandsForRate(sample_rate_hz)),
num_channels_(num_channels),
suppression_params_(config.target_level),
filter_bank_states_heap_(NumChannelsOnHeap(num_channels_)),
upper_band_gains_heap_(NumChannelsOnHeap(num_channels_)),
energies_before_filtering_heap_(NumChannelsOnHeap(num_channels_)),
gain_adjustments_heap_(NumChannelsOnHeap(num_channels_)),
channels_(num_channels_) {
for (size_t ch = 0; ch < num_channels_; ++ch) {
channels_[ch] =
std::make_unique<ChannelState>(suppression_params_, num_bands_);
}
}
void NoiseSuppressor::AggregateWienerFilters(
rtc::ArrayView<float, kFftSizeBy2Plus1> filter) const {
rtc::ArrayView<const float, kFftSizeBy2Plus1> filter0 =
channels_[0]->wiener_filter.get_filter();
std::copy(filter0.begin(), filter0.end(), filter.begin());
for (size_t ch = 1; ch < num_channels_; ++ch) {
rtc::ArrayView<const float, kFftSizeBy2Plus1> filter_ch =
channels_[ch]->wiener_filter.get_filter();
for (size_t k = 0; k < kFftSizeBy2Plus1; ++k) {
filter[k] = std::min(filter[k], filter_ch[k]);
}
}
}
void NoiseSuppressor::Analyze(const AudioBuffer& audio) {
// Prepare the noise estimator for the analysis stage.
for (size_t ch = 0; ch < num_channels_; ++ch) {
channels_[ch]->noise_estimator.PrepareAnalysis();
}
// Check for zero frames.
bool zero_frame = true;
for (size_t ch = 0; ch < num_channels_; ++ch) {
rtc::ArrayView<const float, kNsFrameSize> y_band0(
&audio.split_bands_const(ch)[0][0], kNsFrameSize);
float energy = ComputeEnergyOfExtendedFrame(
y_band0, channels_[ch]->analyze_analysis_memory);
if (energy > 0.f) {
zero_frame = false;
break;
}
}
if (zero_frame) {
// We want to avoid updating statistics in this case:
// Updating feature statistics when we have zeros only will cause
// thresholds to move towards zero signal situations. This in turn has the
// effect that once the signal is "turned on" (non-zero values) everything
// will be treated as speech and there is no noise suppression effect.
// Depending on the duration of the inactive signal it takes a
// considerable amount of time for the system to learn what is noise and
// what is speech.
return;
}
// Only update analysis counter for frames that are properly analyzed.
if (++num_analyzed_frames_ < 0) {
num_analyzed_frames_ = 0;
}
// Analyze all channels.
for (size_t ch = 0; ch < num_channels_; ++ch) {
std::unique_ptr<ChannelState>& ch_p = channels_[ch];
rtc::ArrayView<const float, kNsFrameSize> y_band0(
&audio.split_bands_const(ch)[0][0], kNsFrameSize);
// Form an extended frame and apply analysis filter bank windowing.
std::array<float, kFftSize> extended_frame;
FormExtendedFrame(y_band0, ch_p->analyze_analysis_memory, extended_frame);
ApplyFilterBankWindow(extended_frame);
// Compute the magnitude spectrum.
std::array<float, kFftSize> real;
std::array<float, kFftSize> imag;
fft_.Fft(extended_frame, real, imag);
std::array<float, kFftSizeBy2Plus1> signal_spectrum;
ComputeMagnitudeSpectrum(real, imag, signal_spectrum);
// Compute energies.
float signal_energy = 0.f;
for (size_t i = 0; i < kFftSizeBy2Plus1; ++i) {
signal_energy += real[i] * real[i] + imag[i] * imag[i];
}
signal_energy /= kFftSizeBy2Plus1;
float signal_spectral_sum = 0.f;
for (size_t i = 0; i < kFftSizeBy2Plus1; ++i) {
signal_spectral_sum += signal_spectrum[i];
}
// Estimate the noise spectra and the probability estimates of speech
// presence.
ch_p->noise_estimator.PreUpdate(num_analyzed_frames_, signal_spectrum,
signal_spectral_sum);
std::array<float, kFftSizeBy2Plus1> post_snr;
std::array<float, kFftSizeBy2Plus1> prior_snr;
ComputeSnr(ch_p->wiener_filter.get_filter(),
ch_p->prev_analysis_signal_spectrum, signal_spectrum,
ch_p->noise_estimator.get_prev_noise_spectrum(),
ch_p->noise_estimator.get_noise_spectrum(), prior_snr, post_snr);
ch_p->speech_probability_estimator.Update(
num_analyzed_frames_, prior_snr, post_snr,
ch_p->noise_estimator.get_conservative_noise_spectrum(),
signal_spectrum, signal_spectral_sum, signal_energy);
ch_p->noise_estimator.PostUpdate(
ch_p->speech_probability_estimator.get_probability(), signal_spectrum);
// Store the magnitude spectrum to make it avalilable for the process
// method.
std::copy(signal_spectrum.begin(), signal_spectrum.end(),
ch_p->prev_analysis_signal_spectrum.begin());
}
}
void NoiseSuppressor::Process(AudioBuffer* audio) {
// Select the space for storing data during the processing.
std::array<FilterBankState, kMaxNumChannelsOnStack> filter_bank_states_stack;
rtc::ArrayView<FilterBankState> filter_bank_states(
filter_bank_states_stack.data(), num_channels_);
std::array<float, kMaxNumChannelsOnStack> upper_band_gains_stack;
rtc::ArrayView<float> upper_band_gains(upper_band_gains_stack.data(),
num_channels_);
std::array<float, kMaxNumChannelsOnStack> energies_before_filtering_stack;
rtc::ArrayView<float> energies_before_filtering(
energies_before_filtering_stack.data(), num_channels_);
std::array<float, kMaxNumChannelsOnStack> gain_adjustments_stack;
rtc::ArrayView<float> gain_adjustments(gain_adjustments_stack.data(),
num_channels_);
if (NumChannelsOnHeap(num_channels_) > 0) {
// If the stack-allocated space is too small, use the heap for storing the
// data.
filter_bank_states = rtc::ArrayView<FilterBankState>(
filter_bank_states_heap_.data(), num_channels_);
upper_band_gains =
rtc::ArrayView<float>(upper_band_gains_heap_.data(), num_channels_);
energies_before_filtering = rtc::ArrayView<float>(
energies_before_filtering_heap_.data(), num_channels_);
gain_adjustments =
rtc::ArrayView<float>(gain_adjustments_heap_.data(), num_channels_);
}
// Compute the suppression filters for all channels.
for (size_t ch = 0; ch < num_channels_; ++ch) {
// Form an extended frame and apply analysis filter bank windowing.
rtc::ArrayView<float, kNsFrameSize> y_band0(&audio->split_bands(ch)[0][0],
kNsFrameSize);
FormExtendedFrame(y_band0, channels_[ch]->process_analysis_memory,
filter_bank_states[ch].extended_frame);
ApplyFilterBankWindow(filter_bank_states[ch].extended_frame);
energies_before_filtering[ch] =
ComputeEnergyOfExtendedFrame(filter_bank_states[ch].extended_frame);
// Perform filter bank analysis and compute the magnitude spectrum.
fft_.Fft(filter_bank_states[ch].extended_frame, filter_bank_states[ch].real,
filter_bank_states[ch].imag);
std::array<float, kFftSizeBy2Plus1> signal_spectrum;
ComputeMagnitudeSpectrum(filter_bank_states[ch].real,
filter_bank_states[ch].imag, signal_spectrum);
// Compute the frequency domain gain filter for noise attenuation.
channels_[ch]->wiener_filter.Update(
num_analyzed_frames_,
channels_[ch]->noise_estimator.get_noise_spectrum(),
channels_[ch]->noise_estimator.get_prev_noise_spectrum(),
channels_[ch]->noise_estimator.get_parametric_noise_spectrum(),
signal_spectrum);
if (num_bands_ > 1) {
// Compute the time-domain gain for attenuating the noise in the upper
// bands.
upper_band_gains[ch] = ComputeUpperBandsGain(
suppression_params_.minimum_attenuating_gain,
channels_[ch]->wiener_filter.get_filter(),
channels_[ch]->speech_probability_estimator.get_probability(),
channels_[ch]->prev_analysis_signal_spectrum, signal_spectrum);
}
}
// Only do the below processing if the output of the audio processing module
// is used.
if (!capture_output_used_) {
return;
}
// Aggregate the Wiener filters for all channels.
std::array<float, kFftSizeBy2Plus1> filter_data;
rtc::ArrayView<const float, kFftSizeBy2Plus1> filter = filter_data;
if (num_channels_ == 1) {
filter = channels_[0]->wiener_filter.get_filter();
} else {
AggregateWienerFilters(filter_data);
}
for (size_t ch = 0; ch < num_channels_; ++ch) {
// Apply the filter to the lower band.
for (size_t i = 0; i < kFftSizeBy2Plus1; ++i) {
filter_bank_states[ch].real[i] *= filter[i];
filter_bank_states[ch].imag[i] *= filter[i];
}
}
// Perform filter bank synthesis
for (size_t ch = 0; ch < num_channels_; ++ch) {
fft_.Ifft(filter_bank_states[ch].real, filter_bank_states[ch].imag,
filter_bank_states[ch].extended_frame);
}
for (size_t ch = 0; ch < num_channels_; ++ch) {
const float energy_after_filtering =
ComputeEnergyOfExtendedFrame(filter_bank_states[ch].extended_frame);
// Apply synthesis window.
ApplyFilterBankWindow(filter_bank_states[ch].extended_frame);
// Compute the adjustment of the noise attenuation filter based on the
// effect of the attenuation.
gain_adjustments[ch] =
channels_[ch]->wiener_filter.ComputeOverallScalingFactor(
num_analyzed_frames_,
channels_[ch]->speech_probability_estimator.get_prior_probability(),
energies_before_filtering[ch], energy_after_filtering);
}
// Select and apply adjustment of the noise attenuation filter based on the
// effect of the attenuation.
float gain_adjustment = gain_adjustments[0];
for (size_t ch = 1; ch < num_channels_; ++ch) {
gain_adjustment = std::min(gain_adjustment, gain_adjustments[ch]);
}
for (size_t ch = 0; ch < num_channels_; ++ch) {
for (size_t i = 0; i < kFftSize; ++i) {
filter_bank_states[ch].extended_frame[i] =
gain_adjustment * filter_bank_states[ch].extended_frame[i];
}
}
// Use overlap-and-add to form the output frame of the lowest band.
for (size_t ch = 0; ch < num_channels_; ++ch) {
rtc::ArrayView<float, kNsFrameSize> y_band0(&audio->split_bands(ch)[0][0],
kNsFrameSize);
OverlapAndAdd(filter_bank_states[ch].extended_frame,
channels_[ch]->process_synthesis_memory, y_band0);
}
if (num_bands_ > 1) {
// Select the noise attenuating gain to apply to the upper band.
float upper_band_gain = upper_band_gains[0];
for (size_t ch = 1; ch < num_channels_; ++ch) {
upper_band_gain = std::min(upper_band_gain, upper_band_gains[ch]);
}
// Process the upper bands.
for (size_t ch = 0; ch < num_channels_; ++ch) {
for (size_t b = 1; b < num_bands_; ++b) {
// Delay the upper bands to match the delay of the filterbank applied to
// the lowest band.
rtc::ArrayView<float, kNsFrameSize> y_band(
&audio->split_bands(ch)[b][0], kNsFrameSize);
std::array<float, kNsFrameSize> delayed_frame;
DelaySignal(y_band, channels_[ch]->process_delay_memory[b - 1],
delayed_frame);
// Apply the time-domain noise-attenuating gain.
for (size_t j = 0; j < kNsFrameSize; j++) {
y_band[j] = upper_band_gain * delayed_frame[j];
}
}
}
}
// Limit the output the allowed range.
for (size_t ch = 0; ch < num_channels_; ++ch) {
for (size_t b = 0; b < num_bands_; ++b) {
rtc::ArrayView<float, kNsFrameSize> y_band(&audio->split_bands(ch)[b][0],
kNsFrameSize);
for (size_t j = 0; j < kNsFrameSize; j++) {
y_band[j] = std::min(std::max(y_band[j], -32768.f), 32767.f);
}
}
}
}
} // namespace webrtc