mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-13 22:00:47 +01:00

This CL makes NetEq handle nested RED packets without crashing. Nested RED packets mean that the block PT (see https://tools.ietf.org/html/rfc2198.html#section-3) in the RED packet is also set to the RED PT. This implies a nested RED packet, which is not supported. Instead, all payloads in a RED packet that have the RED PT will be discarded. Bug: chromium:851662 Change-Id: I86ec257e60fb8076e3574ac5a4a1ca50196f6b34 Reviewed-on: https://webrtc-review.googlesource.com/86824 Commit-Queue: Henrik Lundin <henrik.lundin@webrtc.org> Reviewed-by: Ivo Creusen <ivoc@webrtc.org> Cr-Commit-Position: refs/heads/master@{#23825}
370 lines
14 KiB
C++
370 lines
14 KiB
C++
/*
|
|
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
// Unit tests for RedPayloadSplitter class.
|
|
|
|
#include "modules/audio_coding/neteq/red_payload_splitter.h"
|
|
|
|
#include <assert.h>
|
|
|
|
#include <memory>
|
|
#include <utility> // pair
|
|
|
|
#include "api/audio_codecs/builtin_audio_decoder_factory.h"
|
|
#include "modules/audio_coding/neteq/mock/mock_decoder_database.h"
|
|
#include "modules/audio_coding/neteq/packet.h"
|
|
#include "rtc_base/numerics/safe_conversions.h"
|
|
#include "test/gtest.h"
|
|
#include "test/mock_audio_decoder_factory.h"
|
|
|
|
using ::testing::Return;
|
|
using ::testing::ReturnNull;
|
|
|
|
namespace webrtc {
|
|
|
|
static const int kRedPayloadType = 100;
|
|
static const size_t kPayloadLength = 10;
|
|
static const size_t kRedHeaderLength = 4; // 4 bytes RED header.
|
|
static const uint16_t kSequenceNumber = 0;
|
|
static const uint32_t kBaseTimestamp = 0x12345678;
|
|
|
|
// A possible Opus packet that contains FEC is the following.
|
|
// The frame is 20 ms in duration.
|
|
//
|
|
// 0 1 2 3
|
|
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
|
|
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
// |0|0|0|0|1|0|0|0|x|1|x|x|x|x|x|x|x| |
|
|
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
|
|
// | Compressed frame 1 (N-2 bytes)... :
|
|
// : |
|
|
// | |
|
|
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
void CreateOpusFecPayload(uint8_t* payload,
|
|
size_t payload_length,
|
|
uint8_t payload_value) {
|
|
if (payload_length < 2) {
|
|
return;
|
|
}
|
|
payload[0] = 0x08;
|
|
payload[1] = 0x40;
|
|
memset(&payload[2], payload_value, payload_length - 2);
|
|
}
|
|
|
|
// RED headers (according to RFC 2198):
|
|
//
|
|
// 0 1 2 3
|
|
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
|
|
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
// |F| block PT | timestamp offset | block length |
|
|
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|
|
//
|
|
// Last RED header:
|
|
// 0 1 2 3 4 5 6 7
|
|
// +-+-+-+-+-+-+-+-+
|
|
// |0| Block PT |
|
|
// +-+-+-+-+-+-+-+-+
|
|
|
|
// Creates a RED packet, with |num_payloads| payloads, with payload types given
|
|
// by the values in array |payload_types| (which must be of length
|
|
// |num_payloads|). Each redundant payload is |timestamp_offset| samples
|
|
// "behind" the the previous payload.
|
|
Packet CreateRedPayload(size_t num_payloads,
|
|
uint8_t* payload_types,
|
|
int timestamp_offset,
|
|
bool embed_opus_fec = false) {
|
|
Packet packet;
|
|
packet.payload_type = kRedPayloadType;
|
|
packet.timestamp = kBaseTimestamp;
|
|
packet.sequence_number = kSequenceNumber;
|
|
packet.payload.SetSize((kPayloadLength + 1) +
|
|
(num_payloads - 1) *
|
|
(kPayloadLength + kRedHeaderLength));
|
|
uint8_t* payload_ptr = packet.payload.data();
|
|
for (size_t i = 0; i < num_payloads; ++i) {
|
|
// Write the RED headers.
|
|
if (i == num_payloads - 1) {
|
|
// Special case for last payload.
|
|
*payload_ptr = payload_types[i] & 0x7F; // F = 0;
|
|
++payload_ptr;
|
|
break;
|
|
}
|
|
*payload_ptr = payload_types[i] & 0x7F;
|
|
// Not the last block; set F = 1.
|
|
*payload_ptr |= 0x80;
|
|
++payload_ptr;
|
|
int this_offset =
|
|
rtc::checked_cast<int>((num_payloads - i - 1) * timestamp_offset);
|
|
*payload_ptr = this_offset >> 6;
|
|
++payload_ptr;
|
|
assert(kPayloadLength <= 1023); // Max length described by 10 bits.
|
|
*payload_ptr = ((this_offset & 0x3F) << 2) | (kPayloadLength >> 8);
|
|
++payload_ptr;
|
|
*payload_ptr = kPayloadLength & 0xFF;
|
|
++payload_ptr;
|
|
}
|
|
for (size_t i = 0; i < num_payloads; ++i) {
|
|
// Write |i| to all bytes in each payload.
|
|
if (embed_opus_fec) {
|
|
CreateOpusFecPayload(payload_ptr, kPayloadLength,
|
|
static_cast<uint8_t>(i));
|
|
} else {
|
|
memset(payload_ptr, static_cast<int>(i), kPayloadLength);
|
|
}
|
|
payload_ptr += kPayloadLength;
|
|
}
|
|
return packet;
|
|
}
|
|
|
|
// Create a packet with all payload bytes set to |payload_value|.
|
|
Packet CreatePacket(uint8_t payload_type,
|
|
size_t payload_length,
|
|
uint8_t payload_value,
|
|
bool opus_fec = false) {
|
|
Packet packet;
|
|
packet.payload_type = payload_type;
|
|
packet.timestamp = kBaseTimestamp;
|
|
packet.sequence_number = kSequenceNumber;
|
|
packet.payload.SetSize(payload_length);
|
|
if (opus_fec) {
|
|
CreateOpusFecPayload(packet.payload.data(), packet.payload.size(),
|
|
payload_value);
|
|
} else {
|
|
memset(packet.payload.data(), payload_value, packet.payload.size());
|
|
}
|
|
return packet;
|
|
}
|
|
|
|
// Checks that |packet| has the attributes given in the remaining parameters.
|
|
void VerifyPacket(const Packet& packet,
|
|
size_t payload_length,
|
|
uint8_t payload_type,
|
|
uint16_t sequence_number,
|
|
uint32_t timestamp,
|
|
uint8_t payload_value,
|
|
Packet::Priority priority) {
|
|
EXPECT_EQ(payload_length, packet.payload.size());
|
|
EXPECT_EQ(payload_type, packet.payload_type);
|
|
EXPECT_EQ(sequence_number, packet.sequence_number);
|
|
EXPECT_EQ(timestamp, packet.timestamp);
|
|
EXPECT_EQ(priority, packet.priority);
|
|
ASSERT_FALSE(packet.payload.empty());
|
|
for (size_t i = 0; i < packet.payload.size(); ++i) {
|
|
ASSERT_EQ(payload_value, packet.payload.data()[i]);
|
|
}
|
|
}
|
|
|
|
void VerifyPacket(const Packet& packet,
|
|
size_t payload_length,
|
|
uint8_t payload_type,
|
|
uint16_t sequence_number,
|
|
uint32_t timestamp,
|
|
uint8_t payload_value,
|
|
bool primary) {
|
|
return VerifyPacket(packet, payload_length, payload_type, sequence_number,
|
|
timestamp, payload_value,
|
|
Packet::Priority{0, primary ? 0 : 1});
|
|
}
|
|
|
|
// Start of test definitions.
|
|
|
|
TEST(RedPayloadSplitter, CreateAndDestroy) {
|
|
RedPayloadSplitter* splitter = new RedPayloadSplitter;
|
|
delete splitter;
|
|
}
|
|
|
|
// Packet A is split into A1 and A2.
|
|
TEST(RedPayloadSplitter, OnePacketTwoPayloads) {
|
|
uint8_t payload_types[] = {0, 0};
|
|
const int kTimestampOffset = 160;
|
|
PacketList packet_list;
|
|
packet_list.push_back(CreateRedPayload(2, payload_types, kTimestampOffset));
|
|
RedPayloadSplitter splitter;
|
|
EXPECT_TRUE(splitter.SplitRed(&packet_list));
|
|
ASSERT_EQ(2u, packet_list.size());
|
|
// Check first packet. The first in list should always be the primary payload.
|
|
VerifyPacket(packet_list.front(), kPayloadLength, payload_types[1],
|
|
kSequenceNumber, kBaseTimestamp, 1, true);
|
|
packet_list.pop_front();
|
|
// Check second packet.
|
|
VerifyPacket(packet_list.front(), kPayloadLength, payload_types[0],
|
|
kSequenceNumber, kBaseTimestamp - kTimestampOffset, 0, false);
|
|
}
|
|
|
|
// Packets A and B are not split at all. Only the RED header in each packet is
|
|
// removed.
|
|
TEST(RedPayloadSplitter, TwoPacketsOnePayload) {
|
|
uint8_t payload_types[] = {0};
|
|
const int kTimestampOffset = 160;
|
|
// Create first packet, with a single RED payload.
|
|
PacketList packet_list;
|
|
packet_list.push_back(CreateRedPayload(1, payload_types, kTimestampOffset));
|
|
// Create second packet, with a single RED payload.
|
|
{
|
|
Packet packet = CreateRedPayload(1, payload_types, kTimestampOffset);
|
|
// Manually change timestamp and sequence number of second packet.
|
|
packet.timestamp += kTimestampOffset;
|
|
packet.sequence_number++;
|
|
packet_list.push_back(std::move(packet));
|
|
}
|
|
RedPayloadSplitter splitter;
|
|
EXPECT_TRUE(splitter.SplitRed(&packet_list));
|
|
ASSERT_EQ(2u, packet_list.size());
|
|
// Check first packet.
|
|
VerifyPacket(packet_list.front(), kPayloadLength, payload_types[0],
|
|
kSequenceNumber, kBaseTimestamp, 0, true);
|
|
packet_list.pop_front();
|
|
// Check second packet.
|
|
VerifyPacket(packet_list.front(), kPayloadLength, payload_types[0],
|
|
kSequenceNumber + 1, kBaseTimestamp + kTimestampOffset, 0, true);
|
|
}
|
|
|
|
// Packets A and B are split into packets A1, A2, A3, B1, B2, B3, with
|
|
// attributes as follows:
|
|
//
|
|
// A1* A2 A3 B1* B2 B3
|
|
// Payload type 0 1 2 0 1 2
|
|
// Timestamp b b-o b-2o b+o b b-o
|
|
// Sequence number 0 0 0 1 1 1
|
|
//
|
|
// b = kBaseTimestamp, o = kTimestampOffset, * = primary.
|
|
TEST(RedPayloadSplitter, TwoPacketsThreePayloads) {
|
|
uint8_t payload_types[] = {2, 1, 0}; // Primary is the last one.
|
|
const int kTimestampOffset = 160;
|
|
// Create first packet, with 3 RED payloads.
|
|
PacketList packet_list;
|
|
packet_list.push_back(CreateRedPayload(3, payload_types, kTimestampOffset));
|
|
// Create first packet, with 3 RED payloads.
|
|
{
|
|
Packet packet = CreateRedPayload(3, payload_types, kTimestampOffset);
|
|
// Manually change timestamp and sequence number of second packet.
|
|
packet.timestamp += kTimestampOffset;
|
|
packet.sequence_number++;
|
|
packet_list.push_back(std::move(packet));
|
|
}
|
|
RedPayloadSplitter splitter;
|
|
EXPECT_TRUE(splitter.SplitRed(&packet_list));
|
|
ASSERT_EQ(6u, packet_list.size());
|
|
// Check first packet, A1.
|
|
VerifyPacket(packet_list.front(), kPayloadLength, payload_types[2],
|
|
kSequenceNumber, kBaseTimestamp, 2, {0, 0});
|
|
packet_list.pop_front();
|
|
// Check second packet, A2.
|
|
VerifyPacket(packet_list.front(), kPayloadLength, payload_types[1],
|
|
kSequenceNumber, kBaseTimestamp - kTimestampOffset, 1, {0, 1});
|
|
packet_list.pop_front();
|
|
// Check third packet, A3.
|
|
VerifyPacket(packet_list.front(), kPayloadLength, payload_types[0],
|
|
kSequenceNumber, kBaseTimestamp - 2 * kTimestampOffset, 0,
|
|
{0, 2});
|
|
packet_list.pop_front();
|
|
// Check fourth packet, B1.
|
|
VerifyPacket(packet_list.front(), kPayloadLength, payload_types[2],
|
|
kSequenceNumber + 1, kBaseTimestamp + kTimestampOffset, 2,
|
|
{0, 0});
|
|
packet_list.pop_front();
|
|
// Check fifth packet, B2.
|
|
VerifyPacket(packet_list.front(), kPayloadLength, payload_types[1],
|
|
kSequenceNumber + 1, kBaseTimestamp, 1, {0, 1});
|
|
packet_list.pop_front();
|
|
// Check sixth packet, B3.
|
|
VerifyPacket(packet_list.front(), kPayloadLength, payload_types[0],
|
|
kSequenceNumber + 1, kBaseTimestamp - kTimestampOffset, 0,
|
|
{0, 2});
|
|
}
|
|
|
|
// Creates a list with 4 packets with these payload types:
|
|
// 0 = CNGnb
|
|
// 1 = PCMu
|
|
// 2 = DTMF (AVT)
|
|
// 3 = iLBC
|
|
// We expect the method CheckRedPayloads to discard the iLBC packet, since it
|
|
// is a non-CNG, non-DTMF payload of another type than the first speech payload
|
|
// found in the list (which is PCMu).
|
|
TEST(RedPayloadSplitter, CheckRedPayloads) {
|
|
PacketList packet_list;
|
|
for (uint8_t i = 0; i <= 3; ++i) {
|
|
// Create packet with payload type |i|, payload length 10 bytes, all 0.
|
|
packet_list.push_back(CreatePacket(i, 10, 0));
|
|
}
|
|
|
|
// Use a real DecoderDatabase object here instead of a mock, since it is
|
|
// easier to just register the payload types and let the actual implementation
|
|
// do its job.
|
|
DecoderDatabase decoder_database(
|
|
new rtc::RefCountedObject<MockAudioDecoderFactory>, absl::nullopt);
|
|
decoder_database.RegisterPayload(0, NetEqDecoder::kDecoderCNGnb, "cng-nb");
|
|
decoder_database.RegisterPayload(1, NetEqDecoder::kDecoderPCMu, "pcmu");
|
|
decoder_database.RegisterPayload(2, NetEqDecoder::kDecoderAVT, "avt");
|
|
decoder_database.RegisterPayload(3, NetEqDecoder::kDecoderILBC, "ilbc");
|
|
|
|
RedPayloadSplitter splitter;
|
|
splitter.CheckRedPayloads(&packet_list, decoder_database);
|
|
|
|
ASSERT_EQ(3u, packet_list.size()); // Should have dropped the last packet.
|
|
// Verify packets. The loop verifies that payload types 0, 1, and 2 are in the
|
|
// list.
|
|
for (int i = 0; i <= 2; ++i) {
|
|
VerifyPacket(packet_list.front(), 10, i, kSequenceNumber, kBaseTimestamp, 0,
|
|
true);
|
|
packet_list.pop_front();
|
|
}
|
|
EXPECT_TRUE(packet_list.empty());
|
|
}
|
|
|
|
// This test creates a RED packet where the payloads also have the payload type
|
|
// for RED. That is, some kind of weird nested RED packet. This is not supported
|
|
// and the splitter should discard all packets.
|
|
TEST(RedPayloadSplitter, CheckRedPayloadsRecursiveRed) {
|
|
PacketList packet_list;
|
|
for (uint8_t i = 0; i <= 3; ++i) {
|
|
// Create packet with RED payload type, payload length 10 bytes, all 0.
|
|
packet_list.push_back(CreatePacket(kRedPayloadType, 10, 0));
|
|
}
|
|
|
|
// Use a real DecoderDatabase object here instead of a mock, since it is
|
|
// easier to just register the payload types and let the actual implementation
|
|
// do its job.
|
|
DecoderDatabase decoder_database(
|
|
new rtc::RefCountedObject<MockAudioDecoderFactory>, absl::nullopt);
|
|
decoder_database.RegisterPayload(kRedPayloadType, NetEqDecoder::kDecoderRED,
|
|
"red");
|
|
|
|
RedPayloadSplitter splitter;
|
|
splitter.CheckRedPayloads(&packet_list, decoder_database);
|
|
|
|
EXPECT_TRUE(packet_list.empty()); // Should have dropped all packets.
|
|
}
|
|
|
|
// Packet A is split into A1, A2 and A3. But the length parameter is off, so
|
|
// the last payloads should be discarded.
|
|
TEST(RedPayloadSplitter, WrongPayloadLength) {
|
|
uint8_t payload_types[] = {0, 0, 0};
|
|
const int kTimestampOffset = 160;
|
|
PacketList packet_list;
|
|
{
|
|
Packet packet = CreateRedPayload(3, payload_types, kTimestampOffset);
|
|
// Manually tamper with the payload length of the packet.
|
|
// This is one byte too short for the second payload (out of three).
|
|
// We expect only the first payload to be returned.
|
|
packet.payload.SetSize(packet.payload.size() - (kPayloadLength + 1));
|
|
packet_list.push_back(std::move(packet));
|
|
}
|
|
RedPayloadSplitter splitter;
|
|
EXPECT_FALSE(splitter.SplitRed(&packet_list));
|
|
ASSERT_EQ(1u, packet_list.size());
|
|
// Check first packet.
|
|
VerifyPacket(packet_list.front(), kPayloadLength, payload_types[0],
|
|
kSequenceNumber, kBaseTimestamp - 2 * kTimestampOffset, 0,
|
|
{0, 2});
|
|
packet_list.pop_front();
|
|
}
|
|
|
|
} // namespace webrtc
|