webrtc/modules/video_coding/jitter_buffer_unittest.cc
Niels Möller 87e2d785a0 Prepare for splitting FrameType into AudioFrameType and VideoFrameType
This cl deprecates the FrameType enum, and adds aliases AudioFrameType
and VideoFrameType.

After downstream usage is updated, the enums will be separated
and be moved out of common_types.h.

Bug: webrtc:6883
Change-Id: I2aaf660169da45f22574b4cbb16aea8522cc07a6
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/123184
Commit-Queue: Niels Moller <nisse@webrtc.org>
Reviewed-by: Karl Wiberg <kwiberg@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#27011}
2019-03-07 10:12:57 +00:00

2119 lines
72 KiB
C++

/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <string>
#include <list>
#include <memory>
#include <vector>
#include "common_video/h264/h264_common.h"
#include "modules/video_coding/frame_buffer.h"
#include "modules/video_coding/jitter_buffer.h"
#include "modules/video_coding/media_opt_util.h"
#include "modules/video_coding/packet.h"
#include "modules/video_coding/test/stream_generator.h"
#include "rtc_base/location.h"
#include "system_wrappers/include/clock.h"
#include "system_wrappers/include/field_trial.h"
#include "system_wrappers/include/metrics.h"
#include "test/field_trial.h"
#include "test/gmock.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
const uint32_t kProcessIntervalSec = 60;
} // namespace
class Vp9SsMapTest : public ::testing::Test {
protected:
Vp9SsMapTest() : packet_() {}
virtual void SetUp() {
auto& vp9_header =
packet_.video_header.video_type_header.emplace<RTPVideoHeaderVP9>();
packet_.video_header.is_first_packet_in_frame = true;
packet_.dataPtr = data_;
packet_.sizeBytes = 1400;
packet_.seqNum = 1234;
packet_.timestamp = 1;
packet_.markerBit = true;
packet_.frameType = kVideoFrameKey;
packet_.video_header.codec = kVideoCodecVP9;
packet_.video_header.codec = kVideoCodecVP9;
vp9_header.flexible_mode = false;
vp9_header.gof_idx = 0;
vp9_header.temporal_idx = kNoTemporalIdx;
vp9_header.temporal_up_switch = false;
vp9_header.ss_data_available = true;
vp9_header.gof.SetGofInfoVP9(
kTemporalStructureMode3); // kTemporalStructureMode3: 0-2-1-2..
}
Vp9SsMap map_;
uint8_t data_[1500];
VCMPacket packet_;
};
TEST_F(Vp9SsMapTest, Insert) {
EXPECT_TRUE(map_.Insert(packet_));
}
TEST_F(Vp9SsMapTest, Insert_NoSsData) {
absl::get<RTPVideoHeaderVP9>(packet_.video_header.video_type_header)
.ss_data_available = false;
EXPECT_FALSE(map_.Insert(packet_));
}
TEST_F(Vp9SsMapTest, Find) {
EXPECT_TRUE(map_.Insert(packet_));
Vp9SsMap::SsMap::iterator it;
EXPECT_TRUE(map_.Find(packet_.timestamp, &it));
EXPECT_EQ(packet_.timestamp, it->first);
}
TEST_F(Vp9SsMapTest, Find_WithWrap) {
const uint32_t kSsTimestamp1 = 0xFFFFFFFF;
const uint32_t kSsTimestamp2 = 100;
packet_.timestamp = kSsTimestamp1;
EXPECT_TRUE(map_.Insert(packet_));
packet_.timestamp = kSsTimestamp2;
EXPECT_TRUE(map_.Insert(packet_));
Vp9SsMap::SsMap::iterator it;
EXPECT_FALSE(map_.Find(kSsTimestamp1 - 1, &it));
EXPECT_TRUE(map_.Find(kSsTimestamp1, &it));
EXPECT_EQ(kSsTimestamp1, it->first);
EXPECT_TRUE(map_.Find(0, &it));
EXPECT_EQ(kSsTimestamp1, it->first);
EXPECT_TRUE(map_.Find(kSsTimestamp2 - 1, &it));
EXPECT_EQ(kSsTimestamp1, it->first);
EXPECT_TRUE(map_.Find(kSsTimestamp2, &it));
EXPECT_EQ(kSsTimestamp2, it->first);
EXPECT_TRUE(map_.Find(kSsTimestamp2 + 1, &it));
EXPECT_EQ(kSsTimestamp2, it->first);
}
TEST_F(Vp9SsMapTest, Reset) {
EXPECT_TRUE(map_.Insert(packet_));
Vp9SsMap::SsMap::iterator it;
EXPECT_TRUE(map_.Find(packet_.timestamp, &it));
EXPECT_EQ(packet_.timestamp, it->first);
map_.Reset();
EXPECT_FALSE(map_.Find(packet_.timestamp, &it));
}
TEST_F(Vp9SsMapTest, RemoveOld) {
Vp9SsMap::SsMap::iterator it;
const uint32_t kSsTimestamp1 = 10000;
packet_.timestamp = kSsTimestamp1;
EXPECT_TRUE(map_.Insert(packet_));
const uint32_t kTimestamp = kSsTimestamp1 + kProcessIntervalSec * 90000;
map_.RemoveOld(kTimestamp - 1); // Interval not passed.
EXPECT_TRUE(map_.Find(kSsTimestamp1, &it)); // Should not been removed.
map_.RemoveOld(kTimestamp);
EXPECT_FALSE(map_.Find(kSsTimestamp1, &it));
EXPECT_TRUE(map_.Find(kTimestamp, &it));
EXPECT_EQ(kTimestamp, it->first);
}
TEST_F(Vp9SsMapTest, RemoveOld_WithWrap) {
Vp9SsMap::SsMap::iterator it;
const uint32_t kSsTimestamp1 = 0xFFFFFFFF - kProcessIntervalSec * 90000;
const uint32_t kSsTimestamp2 = 10;
const uint32_t kSsTimestamp3 = 1000;
packet_.timestamp = kSsTimestamp1;
EXPECT_TRUE(map_.Insert(packet_));
packet_.timestamp = kSsTimestamp2;
EXPECT_TRUE(map_.Insert(packet_));
packet_.timestamp = kSsTimestamp3;
EXPECT_TRUE(map_.Insert(packet_));
map_.RemoveOld(kSsTimestamp3);
EXPECT_FALSE(map_.Find(kSsTimestamp1, &it));
EXPECT_FALSE(map_.Find(kSsTimestamp2, &it));
EXPECT_TRUE(map_.Find(kSsTimestamp3, &it));
}
TEST_F(Vp9SsMapTest, UpdatePacket_NoSsData) {
absl::get<RTPVideoHeaderVP9>(packet_.video_header.video_type_header).gof_idx =
0;
EXPECT_FALSE(map_.UpdatePacket(&packet_));
}
TEST_F(Vp9SsMapTest, UpdatePacket_NoGofIdx) {
EXPECT_TRUE(map_.Insert(packet_));
absl::get<RTPVideoHeaderVP9>(packet_.video_header.video_type_header).gof_idx =
kNoGofIdx;
EXPECT_FALSE(map_.UpdatePacket(&packet_));
}
TEST_F(Vp9SsMapTest, UpdatePacket_InvalidGofIdx) {
EXPECT_TRUE(map_.Insert(packet_));
absl::get<RTPVideoHeaderVP9>(packet_.video_header.video_type_header).gof_idx =
4;
EXPECT_FALSE(map_.UpdatePacket(&packet_));
}
TEST_F(Vp9SsMapTest, UpdatePacket) {
auto& vp9_header =
absl::get<RTPVideoHeaderVP9>(packet_.video_header.video_type_header);
EXPECT_TRUE(map_.Insert(packet_)); // kTemporalStructureMode3: 0-2-1-2..
vp9_header.gof_idx = 0;
EXPECT_TRUE(map_.UpdatePacket(&packet_));
EXPECT_EQ(0, vp9_header.temporal_idx);
EXPECT_FALSE(vp9_header.temporal_up_switch);
EXPECT_EQ(1U, vp9_header.num_ref_pics);
EXPECT_EQ(4, vp9_header.pid_diff[0]);
vp9_header.gof_idx = 1;
EXPECT_TRUE(map_.UpdatePacket(&packet_));
EXPECT_EQ(2, vp9_header.temporal_idx);
EXPECT_TRUE(vp9_header.temporal_up_switch);
EXPECT_EQ(1U, vp9_header.num_ref_pics);
EXPECT_EQ(1, vp9_header.pid_diff[0]);
vp9_header.gof_idx = 2;
EXPECT_TRUE(map_.UpdatePacket(&packet_));
EXPECT_EQ(1, vp9_header.temporal_idx);
EXPECT_TRUE(vp9_header.temporal_up_switch);
EXPECT_EQ(1U, vp9_header.num_ref_pics);
EXPECT_EQ(2, vp9_header.pid_diff[0]);
vp9_header.gof_idx = 3;
EXPECT_TRUE(map_.UpdatePacket(&packet_));
EXPECT_EQ(2, vp9_header.temporal_idx);
EXPECT_TRUE(vp9_header.temporal_up_switch);
EXPECT_EQ(1U, vp9_header.num_ref_pics);
EXPECT_EQ(1, vp9_header.pid_diff[0]);
}
class TestBasicJitterBuffer : public ::testing::TestWithParam<std::string>,
public NackSender,
public KeyFrameRequestSender {
public:
void SendNack(const std::vector<uint16_t>& sequence_numbers) override {
nack_sent_.insert(nack_sent_.end(), sequence_numbers.begin(),
sequence_numbers.end());
}
void RequestKeyFrame() override { ++keyframe_requests_; }
std::vector<uint16_t> nack_sent_;
int keyframe_requests_;
protected:
TestBasicJitterBuffer() {}
void SetUp() override {
clock_.reset(new SimulatedClock(0));
jitter_buffer_.reset(new VCMJitterBuffer(
clock_.get(), absl::WrapUnique(EventWrapper::Create()), this, this));
jitter_buffer_->Start();
seq_num_ = 1234;
timestamp_ = 0;
size_ = 1400;
// Data vector - 0, 0, 0x80, 3, 4, 5, 6, 7, 8, 9, 0, 0, 0x80, 3....
data_[0] = 0;
data_[1] = 0;
data_[2] = 0x80;
int count = 3;
for (unsigned int i = 3; i < sizeof(data_) - 3; ++i) {
data_[i] = count;
count++;
if (count == 10) {
data_[i + 1] = 0;
data_[i + 2] = 0;
data_[i + 3] = 0x80;
count = 3;
i += 3;
}
}
WebRtcRTPHeader rtpHeader;
memset(&rtpHeader, 0, sizeof(rtpHeader));
rtpHeader.header.sequenceNumber = seq_num_;
rtpHeader.header.timestamp = timestamp_;
rtpHeader.header.markerBit = true;
rtpHeader.frameType = kVideoFrameDelta;
rtpHeader.video_header().codec = kVideoCodecGeneric;
rtpHeader.video_header().is_first_packet_in_frame = true;
packet_.reset(new VCMPacket(data_, size_, rtpHeader));
}
VCMEncodedFrame* DecodeCompleteFrame() {
VCMEncodedFrame* found_frame = jitter_buffer_->NextCompleteFrame(10);
if (!found_frame)
return nullptr;
return jitter_buffer_->ExtractAndSetDecode(found_frame->Timestamp());
}
void CheckOutFrame(VCMEncodedFrame* frame_out,
unsigned int size,
bool startCode) {
ASSERT_TRUE(frame_out);
const uint8_t* outData = frame_out->data();
unsigned int i = 0;
if (startCode) {
EXPECT_EQ(0, outData[0]);
EXPECT_EQ(0, outData[1]);
EXPECT_EQ(0, outData[2]);
EXPECT_EQ(1, outData[3]);
i += 4;
}
EXPECT_EQ(size, frame_out->size());
int count = 3;
for (; i < size; i++) {
if (outData[i] == 0 && outData[i + 1] == 0 && outData[i + 2] == 0x80) {
i += 2;
} else if (startCode && outData[i] == 0 && outData[i + 1] == 0) {
EXPECT_EQ(0, outData[0]);
EXPECT_EQ(0, outData[1]);
EXPECT_EQ(0, outData[2]);
EXPECT_EQ(1, outData[3]);
i += 3;
} else {
EXPECT_EQ(count, outData[i]);
count++;
if (count == 10) {
count = 3;
}
}
}
}
uint16_t seq_num_;
uint32_t timestamp_;
int size_;
uint8_t data_[1500];
std::unique_ptr<VCMPacket> packet_;
std::unique_ptr<SimulatedClock> clock_;
std::unique_ptr<VCMJitterBuffer> jitter_buffer_;
};
class TestRunningJitterBuffer : public ::testing::TestWithParam<std::string>,
public NackSender,
public KeyFrameRequestSender {
public:
void SendNack(const std::vector<uint16_t>& sequence_numbers) {
nack_sent_.insert(nack_sent_.end(), sequence_numbers.begin(),
sequence_numbers.end());
}
void RequestKeyFrame() { ++keyframe_requests_; }
std::vector<uint16_t> nack_sent_;
int keyframe_requests_;
protected:
enum { kDataBufferSize = 10 };
virtual void SetUp() {
clock_.reset(new SimulatedClock(0));
max_nack_list_size_ = 150;
oldest_packet_to_nack_ = 250;
jitter_buffer_ = new VCMJitterBuffer(
clock_.get(), absl::WrapUnique(EventWrapper::Create()), this, this);
stream_generator_ = new StreamGenerator(0, clock_->TimeInMilliseconds());
jitter_buffer_->Start();
jitter_buffer_->SetNackSettings(max_nack_list_size_, oldest_packet_to_nack_,
0);
memset(data_buffer_, 0, kDataBufferSize);
}
virtual void TearDown() {
jitter_buffer_->Stop();
delete stream_generator_;
delete jitter_buffer_;
}
VCMFrameBufferEnum InsertPacketAndPop(int index) {
VCMPacket packet;
packet.dataPtr = data_buffer_;
bool packet_available = stream_generator_->PopPacket(&packet, index);
EXPECT_TRUE(packet_available);
if (!packet_available)
return kGeneralError; // Return here to avoid crashes below.
bool retransmitted = false;
return jitter_buffer_->InsertPacket(packet, &retransmitted);
}
VCMFrameBufferEnum InsertPacket(int index) {
VCMPacket packet;
packet.dataPtr = data_buffer_;
bool packet_available = stream_generator_->GetPacket(&packet, index);
EXPECT_TRUE(packet_available);
if (!packet_available)
return kGeneralError; // Return here to avoid crashes below.
bool retransmitted = false;
return jitter_buffer_->InsertPacket(packet, &retransmitted);
}
VCMFrameBufferEnum InsertFrame(VideoFrameType frame_type) {
stream_generator_->GenerateFrame(
frame_type, (frame_type != kEmptyFrame) ? 1 : 0,
(frame_type == kEmptyFrame) ? 1 : 0, clock_->TimeInMilliseconds());
VCMFrameBufferEnum ret = InsertPacketAndPop(0);
clock_->AdvanceTimeMilliseconds(kDefaultFramePeriodMs);
return ret;
}
VCMFrameBufferEnum InsertFrames(int num_frames, VideoFrameType frame_type) {
VCMFrameBufferEnum ret_for_all = kNoError;
for (int i = 0; i < num_frames; ++i) {
VCMFrameBufferEnum ret = InsertFrame(frame_type);
if (ret < kNoError) {
ret_for_all = ret;
} else if (ret_for_all >= kNoError) {
ret_for_all = ret;
}
}
return ret_for_all;
}
void DropFrame(int num_packets) {
stream_generator_->GenerateFrame(kVideoFrameDelta, num_packets, 0,
clock_->TimeInMilliseconds());
for (int i = 0; i < num_packets; ++i)
stream_generator_->DropLastPacket();
clock_->AdvanceTimeMilliseconds(kDefaultFramePeriodMs);
}
bool DecodeCompleteFrame() {
VCMEncodedFrame* found_frame = jitter_buffer_->NextCompleteFrame(0);
if (!found_frame)
return false;
VCMEncodedFrame* frame =
jitter_buffer_->ExtractAndSetDecode(found_frame->Timestamp());
bool ret = (frame != NULL);
jitter_buffer_->ReleaseFrame(frame);
return ret;
}
VCMJitterBuffer* jitter_buffer_;
StreamGenerator* stream_generator_;
std::unique_ptr<SimulatedClock> clock_;
size_t max_nack_list_size_;
int oldest_packet_to_nack_;
uint8_t data_buffer_[kDataBufferSize];
};
class TestJitterBufferNack : public TestRunningJitterBuffer {
protected:
TestJitterBufferNack() {}
virtual void SetUp() {
TestRunningJitterBuffer::SetUp();
jitter_buffer_->SetNackMode(kNack, -1, -1);
}
virtual void TearDown() { TestRunningJitterBuffer::TearDown(); }
};
TEST_F(TestBasicJitterBuffer, StopRunning) {
jitter_buffer_->Stop();
EXPECT_TRUE(NULL == DecodeCompleteFrame());
jitter_buffer_->Start();
// No packets inserted.
EXPECT_TRUE(NULL == DecodeCompleteFrame());
}
TEST_F(TestBasicJitterBuffer, SinglePacketFrame) {
// Always start with a complete key frame when not allowing errors.
packet_->frameType = kVideoFrameKey;
packet_->video_header.is_first_packet_in_frame = true;
packet_->markerBit = true;
packet_->timestamp += 123 * 90;
// Insert the packet to the jitter buffer and get a frame.
bool retransmitted = false;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
CheckOutFrame(frame_out, size_, false);
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
}
TEST_F(TestBasicJitterBuffer, VerifyHistogramStats) {
metrics::Reset();
// Always start with a complete key frame when not allowing errors.
packet_->frameType = kVideoFrameKey;
packet_->video_header.is_first_packet_in_frame = true;
packet_->markerBit = true;
packet_->timestamp += 123 * 90;
// Insert single packet frame to the jitter buffer and get a frame.
bool retransmitted = false;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
CheckOutFrame(frame_out, size_, false);
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
// Verify that histograms are updated when the jitter buffer is stopped.
clock_->AdvanceTimeMilliseconds(metrics::kMinRunTimeInSeconds * 1000);
jitter_buffer_->Stop();
EXPECT_EQ(1, metrics::NumEvents("WebRTC.Video.DiscardedPacketsInPercent", 0));
EXPECT_EQ(1,
metrics::NumEvents("WebRTC.Video.DuplicatedPacketsInPercent", 0));
EXPECT_EQ(
1, metrics::NumSamples("WebRTC.Video.CompleteFramesReceivedPerSecond"));
EXPECT_EQ(
1, metrics::NumEvents("WebRTC.Video.KeyFramesReceivedInPermille", 1000));
// Verify that histograms are not updated if stop is called again.
jitter_buffer_->Stop();
EXPECT_EQ(1, metrics::NumSamples("WebRTC.Video.DiscardedPacketsInPercent"));
EXPECT_EQ(1, metrics::NumSamples("WebRTC.Video.DuplicatedPacketsInPercent"));
EXPECT_EQ(
1, metrics::NumSamples("WebRTC.Video.CompleteFramesReceivedPerSecond"));
EXPECT_EQ(1, metrics::NumSamples("WebRTC.Video.KeyFramesReceivedInPermille"));
}
TEST_F(TestBasicJitterBuffer, DualPacketFrame) {
packet_->frameType = kVideoFrameKey;
packet_->video_header.is_first_packet_in_frame = true;
packet_->markerBit = false;
bool retransmitted = false;
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
// Should not be complete.
EXPECT_TRUE(frame_out == NULL);
++seq_num_;
packet_->video_header.is_first_packet_in_frame = false;
packet_->markerBit = true;
packet_->seqNum = seq_num_;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
frame_out = DecodeCompleteFrame();
CheckOutFrame(frame_out, 2 * size_, false);
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
}
TEST_F(TestBasicJitterBuffer, 100PacketKeyFrame) {
packet_->frameType = kVideoFrameKey;
packet_->video_header.is_first_packet_in_frame = true;
packet_->markerBit = false;
bool retransmitted = false;
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
// Frame should not be complete.
EXPECT_TRUE(frame_out == NULL);
// Insert 98 frames.
int loop = 0;
do {
seq_num_++;
packet_->video_header.is_first_packet_in_frame = false;
packet_->markerBit = false;
packet_->seqNum = seq_num_;
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
loop++;
} while (loop < 98);
// Insert last packet.
++seq_num_;
packet_->video_header.is_first_packet_in_frame = false;
packet_->markerBit = true;
packet_->seqNum = seq_num_;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
frame_out = DecodeCompleteFrame();
CheckOutFrame(frame_out, 100 * size_, false);
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
}
TEST_F(TestBasicJitterBuffer, 100PacketDeltaFrame) {
// Always start with a complete key frame.
packet_->frameType = kVideoFrameKey;
packet_->video_header.is_first_packet_in_frame = true;
packet_->markerBit = true;
bool retransmitted = false;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
EXPECT_FALSE(frame_out == NULL);
jitter_buffer_->ReleaseFrame(frame_out);
++seq_num_;
packet_->seqNum = seq_num_;
packet_->markerBit = false;
packet_->frameType = kVideoFrameDelta;
packet_->timestamp += 33 * 90;
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
frame_out = DecodeCompleteFrame();
// Frame should not be complete.
EXPECT_TRUE(frame_out == NULL);
packet_->video_header.is_first_packet_in_frame = false;
// Insert 98 frames.
int loop = 0;
do {
++seq_num_;
packet_->seqNum = seq_num_;
// Insert a packet into a frame.
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
loop++;
} while (loop < 98);
// Insert the last packet.
++seq_num_;
packet_->video_header.is_first_packet_in_frame = false;
packet_->markerBit = true;
packet_->seqNum = seq_num_;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
frame_out = DecodeCompleteFrame();
CheckOutFrame(frame_out, 100 * size_, false);
EXPECT_EQ(kVideoFrameDelta, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
}
TEST_F(TestBasicJitterBuffer, PacketReorderingReverseOrder) {
// Insert the "first" packet last.
seq_num_ += 100;
packet_->frameType = kVideoFrameKey;
packet_->video_header.is_first_packet_in_frame = false;
packet_->markerBit = true;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
bool retransmitted = false;
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
EXPECT_TRUE(frame_out == NULL);
// Insert 98 packets.
int loop = 0;
do {
seq_num_--;
packet_->video_header.is_first_packet_in_frame = false;
packet_->markerBit = false;
packet_->seqNum = seq_num_;
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
loop++;
} while (loop < 98);
// Insert the last packet.
seq_num_--;
packet_->video_header.is_first_packet_in_frame = true;
packet_->markerBit = false;
packet_->seqNum = seq_num_;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
frame_out = DecodeCompleteFrame();
CheckOutFrame(frame_out, 100 * size_, false);
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
}
TEST_F(TestBasicJitterBuffer, FrameReordering2Frames2PacketsEach) {
packet_->frameType = kVideoFrameDelta;
packet_->video_header.is_first_packet_in_frame = true;
packet_->markerBit = false;
bool retransmitted = false;
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
EXPECT_TRUE(frame_out == NULL);
seq_num_++;
packet_->video_header.is_first_packet_in_frame = false;
packet_->markerBit = true;
packet_->seqNum = seq_num_;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
// check that we fail to get frame since seqnum is not continuous
frame_out = DecodeCompleteFrame();
EXPECT_TRUE(frame_out == NULL);
seq_num_ -= 3;
timestamp_ -= 33 * 90;
packet_->frameType = kVideoFrameKey;
packet_->video_header.is_first_packet_in_frame = true;
packet_->markerBit = false;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
frame_out = DecodeCompleteFrame();
// It should not be complete.
EXPECT_TRUE(frame_out == NULL);
seq_num_++;
packet_->video_header.is_first_packet_in_frame = false;
packet_->markerBit = true;
packet_->seqNum = seq_num_;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
frame_out = DecodeCompleteFrame();
CheckOutFrame(frame_out, 2 * size_, false);
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
frame_out = DecodeCompleteFrame();
CheckOutFrame(frame_out, 2 * size_, false);
EXPECT_EQ(kVideoFrameDelta, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
}
TEST_F(TestBasicJitterBuffer, TestReorderingWithPadding) {
packet_->frameType = kVideoFrameKey;
packet_->video_header.is_first_packet_in_frame = true;
packet_->markerBit = true;
// Send in an initial good packet/frame (Frame A) to start things off.
bool retransmitted = false;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
EXPECT_TRUE(frame_out != NULL);
jitter_buffer_->ReleaseFrame(frame_out);
// Now send in a complete delta frame (Frame C), but with a sequence number
// gap. No pic index either, so no temporal scalability cheating :)
packet_->frameType = kVideoFrameDelta;
// Leave a gap of 2 sequence numbers and two frames.
packet_->seqNum = seq_num_ + 3;
packet_->timestamp = timestamp_ + (66 * 90);
// Still isFirst = marker = true.
// Session should be complete (frame is complete), but there's nothing to
// decode yet.
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
frame_out = DecodeCompleteFrame();
EXPECT_TRUE(frame_out == NULL);
// Now send in a complete delta frame (Frame B) that is continuous from A, but
// doesn't fill the full gap to C. The rest of the gap is going to be padding.
packet_->seqNum = seq_num_ + 1;
packet_->timestamp = timestamp_ + (33 * 90);
// Still isFirst = marker = true.
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
frame_out = DecodeCompleteFrame();
EXPECT_TRUE(frame_out != NULL);
jitter_buffer_->ReleaseFrame(frame_out);
// But Frame C isn't continuous yet.
frame_out = DecodeCompleteFrame();
EXPECT_TRUE(frame_out == NULL);
// Add in the padding. These are empty packets (data length is 0) with no
// marker bit and matching the timestamp of Frame B.
WebRtcRTPHeader rtpHeader;
memset(&rtpHeader, 0, sizeof(rtpHeader));
rtpHeader.header.sequenceNumber = seq_num_ + 2;
rtpHeader.header.timestamp = timestamp_ + (33 * 90);
rtpHeader.header.markerBit = false;
rtpHeader.video_header().codec = kVideoCodecGeneric;
VCMPacket empty_packet(data_, 0, rtpHeader);
EXPECT_EQ(kOldPacket,
jitter_buffer_->InsertPacket(empty_packet, &retransmitted));
empty_packet.seqNum += 1;
EXPECT_EQ(kOldPacket,
jitter_buffer_->InsertPacket(empty_packet, &retransmitted));
// But now Frame C should be ready!
frame_out = DecodeCompleteFrame();
EXPECT_TRUE(frame_out != NULL);
jitter_buffer_->ReleaseFrame(frame_out);
}
TEST_F(TestBasicJitterBuffer, DuplicatePackets) {
packet_->frameType = kVideoFrameKey;
packet_->video_header.is_first_packet_in_frame = true;
packet_->markerBit = false;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
EXPECT_EQ(0, jitter_buffer_->num_packets());
EXPECT_EQ(0, jitter_buffer_->num_duplicated_packets());
bool retransmitted = false;
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
EXPECT_TRUE(frame_out == NULL);
EXPECT_EQ(1, jitter_buffer_->num_packets());
EXPECT_EQ(0, jitter_buffer_->num_duplicated_packets());
// Insert a packet into a frame.
EXPECT_EQ(kDuplicatePacket,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
EXPECT_EQ(2, jitter_buffer_->num_packets());
EXPECT_EQ(1, jitter_buffer_->num_duplicated_packets());
seq_num_++;
packet_->seqNum = seq_num_;
packet_->markerBit = true;
packet_->video_header.is_first_packet_in_frame = false;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
frame_out = DecodeCompleteFrame();
ASSERT_TRUE(frame_out != NULL);
CheckOutFrame(frame_out, 2 * size_, false);
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
EXPECT_EQ(3, jitter_buffer_->num_packets());
EXPECT_EQ(1, jitter_buffer_->num_duplicated_packets());
jitter_buffer_->ReleaseFrame(frame_out);
}
TEST_F(TestBasicJitterBuffer, DuplicatePreviousDeltaFramePacket) {
packet_->frameType = kVideoFrameKey;
packet_->video_header.is_first_packet_in_frame = true;
packet_->markerBit = true;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
EXPECT_EQ(0, jitter_buffer_->num_packets());
EXPECT_EQ(0, jitter_buffer_->num_duplicated_packets());
bool retransmitted = false;
// Insert first complete frame.
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
ASSERT_TRUE(frame_out != NULL);
CheckOutFrame(frame_out, size_, false);
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
// Insert 3 delta frames.
for (uint16_t i = 1; i <= 3; ++i) {
packet_->seqNum = seq_num_ + i;
packet_->timestamp = timestamp_ + (i * 33) * 90;
packet_->frameType = kVideoFrameDelta;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
EXPECT_EQ(i + 1, jitter_buffer_->num_packets());
EXPECT_EQ(0, jitter_buffer_->num_duplicated_packets());
}
// Retransmit second delta frame.
packet_->seqNum = seq_num_ + 2;
packet_->timestamp = timestamp_ + 66 * 90;
EXPECT_EQ(kDuplicatePacket,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
EXPECT_EQ(5, jitter_buffer_->num_packets());
EXPECT_EQ(1, jitter_buffer_->num_duplicated_packets());
// Should be able to decode 3 delta frames, key frame already decoded.
for (size_t i = 0; i < 3; ++i) {
frame_out = DecodeCompleteFrame();
ASSERT_TRUE(frame_out != NULL);
CheckOutFrame(frame_out, size_, false);
EXPECT_EQ(kVideoFrameDelta, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
}
}
TEST_F(TestBasicJitterBuffer, TestSkipForwardVp9) {
// Verify that JB skips forward to next base layer frame.
// -------------------------------------------------
// | 65485 | 65486 | 65487 | 65488 | 65489 | ...
// | pid:5 | pid:6 | pid:7 | pid:8 | pid:9 | ...
// | tid:0 | tid:2 | tid:1 | tid:2 | tid:0 | ...
// | ss | x | x | x | |
// -------------------------------------------------
// |<----------tl0idx:200--------->|<---tl0idx:201---
auto& vp9_header =
packet_->video_header.video_type_header.emplace<RTPVideoHeaderVP9>();
bool re = false;
packet_->video_header.codec = kVideoCodecVP9;
packet_->video_header.is_first_packet_in_frame = true;
packet_->markerBit = true;
vp9_header.flexible_mode = false;
vp9_header.spatial_idx = 0;
vp9_header.beginning_of_frame = true;
vp9_header.end_of_frame = true;
vp9_header.temporal_up_switch = false;
packet_->seqNum = 65485;
packet_->timestamp = 1000;
packet_->frameType = kVideoFrameKey;
vp9_header.picture_id = 5;
vp9_header.tl0_pic_idx = 200;
vp9_header.temporal_idx = 0;
vp9_header.ss_data_available = true;
vp9_header.gof.SetGofInfoVP9(
kTemporalStructureMode3); // kTemporalStructureMode3: 0-2-1-2..
EXPECT_EQ(kCompleteSession, jitter_buffer_->InsertPacket(*packet_, &re));
// Insert next temporal layer 0.
packet_->seqNum = 65489;
packet_->timestamp = 13000;
packet_->frameType = kVideoFrameDelta;
vp9_header.picture_id = 9;
vp9_header.tl0_pic_idx = 201;
vp9_header.temporal_idx = 0;
vp9_header.ss_data_available = false;
EXPECT_EQ(kCompleteSession, jitter_buffer_->InsertPacket(*packet_, &re));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
EXPECT_EQ(1000U, frame_out->Timestamp());
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
frame_out = DecodeCompleteFrame();
EXPECT_EQ(13000U, frame_out->Timestamp());
EXPECT_EQ(kVideoFrameDelta, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
}
TEST_F(TestBasicJitterBuffer, ReorderedVp9SsData_3TlLayers) {
// Verify that frames are updated with SS data when SS packet is reordered.
// --------------------------------
// | 65486 | 65487 | 65485 |...
// | pid:6 | pid:7 | pid:5 |...
// | tid:2 | tid:1 | tid:0 |...
// | | | ss |
// --------------------------------
// |<--------tl0idx:200--------->|
auto& vp9_header =
packet_->video_header.video_type_header.emplace<RTPVideoHeaderVP9>();
bool re = false;
packet_->video_header.codec = kVideoCodecVP9;
packet_->video_header.is_first_packet_in_frame = true;
packet_->markerBit = true;
vp9_header.flexible_mode = false;
vp9_header.spatial_idx = 0;
vp9_header.beginning_of_frame = true;
vp9_header.end_of_frame = true;
vp9_header.tl0_pic_idx = 200;
packet_->seqNum = 65486;
packet_->timestamp = 6000;
packet_->frameType = kVideoFrameDelta;
vp9_header.picture_id = 6;
vp9_header.temporal_idx = 2;
vp9_header.temporal_up_switch = true;
EXPECT_EQ(kCompleteSession, jitter_buffer_->InsertPacket(*packet_, &re));
packet_->seqNum = 65487;
packet_->timestamp = 9000;
packet_->frameType = kVideoFrameDelta;
vp9_header.picture_id = 7;
vp9_header.temporal_idx = 1;
vp9_header.temporal_up_switch = true;
EXPECT_EQ(kCompleteSession, jitter_buffer_->InsertPacket(*packet_, &re));
// Insert first frame with SS data.
packet_->seqNum = 65485;
packet_->timestamp = 3000;
packet_->frameType = kVideoFrameKey;
packet_->video_header.width = 352;
packet_->video_header.height = 288;
vp9_header.picture_id = 5;
vp9_header.temporal_idx = 0;
vp9_header.temporal_up_switch = false;
vp9_header.ss_data_available = true;
vp9_header.gof.SetGofInfoVP9(
kTemporalStructureMode3); // kTemporalStructureMode3: 0-2-1-2..
EXPECT_EQ(kCompleteSession, jitter_buffer_->InsertPacket(*packet_, &re));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
EXPECT_EQ(3000U, frame_out->Timestamp());
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
EXPECT_EQ(0, frame_out->CodecSpecific()->codecSpecific.VP9.temporal_idx);
EXPECT_FALSE(
frame_out->CodecSpecific()->codecSpecific.VP9.temporal_up_switch);
jitter_buffer_->ReleaseFrame(frame_out);
frame_out = DecodeCompleteFrame();
EXPECT_EQ(6000U, frame_out->Timestamp());
EXPECT_EQ(kVideoFrameDelta, frame_out->FrameType());
EXPECT_EQ(2, frame_out->CodecSpecific()->codecSpecific.VP9.temporal_idx);
EXPECT_TRUE(frame_out->CodecSpecific()->codecSpecific.VP9.temporal_up_switch);
jitter_buffer_->ReleaseFrame(frame_out);
frame_out = DecodeCompleteFrame();
EXPECT_EQ(9000U, frame_out->Timestamp());
EXPECT_EQ(kVideoFrameDelta, frame_out->FrameType());
EXPECT_EQ(1, frame_out->CodecSpecific()->codecSpecific.VP9.temporal_idx);
EXPECT_TRUE(frame_out->CodecSpecific()->codecSpecific.VP9.temporal_up_switch);
jitter_buffer_->ReleaseFrame(frame_out);
}
TEST_F(TestBasicJitterBuffer, ReorderedVp9SsData_2Tl2SLayers) {
// Verify that frames are updated with SS data when SS packet is reordered.
// -----------------------------------------
// | 65486 | 65487 | 65485 | 65484 |...
// | pid:6 | pid:6 | pid:5 | pid:5 |...
// | tid:1 | tid:1 | tid:0 | tid:0 |...
// | sid:0 | sid:1 | sid:1 | sid:0 |...
// | t:6000 | t:6000 | t:3000 | t:3000 |
// | | | | ss |
// -----------------------------------------
// |<-----------tl0idx:200------------>|
auto& vp9_header =
packet_->video_header.video_type_header.emplace<RTPVideoHeaderVP9>();
bool re = false;
packet_->video_header.codec = kVideoCodecVP9;
vp9_header.flexible_mode = false;
vp9_header.beginning_of_frame = true;
vp9_header.end_of_frame = true;
vp9_header.tl0_pic_idx = 200;
packet_->video_header.is_first_packet_in_frame = true;
packet_->markerBit = false;
packet_->seqNum = 65486;
packet_->timestamp = 6000;
packet_->frameType = kVideoFrameDelta;
vp9_header.spatial_idx = 0;
vp9_header.picture_id = 6;
vp9_header.temporal_idx = 1;
vp9_header.temporal_up_switch = true;
EXPECT_EQ(kIncomplete, jitter_buffer_->InsertPacket(*packet_, &re));
packet_->video_header.is_first_packet_in_frame = false;
packet_->markerBit = true;
packet_->seqNum = 65487;
packet_->frameType = kVideoFrameDelta;
vp9_header.spatial_idx = 1;
vp9_header.picture_id = 6;
vp9_header.temporal_idx = 1;
vp9_header.temporal_up_switch = true;
EXPECT_EQ(kCompleteSession, jitter_buffer_->InsertPacket(*packet_, &re));
packet_->video_header.is_first_packet_in_frame = false;
packet_->markerBit = true;
packet_->seqNum = 65485;
packet_->timestamp = 3000;
packet_->frameType = kVideoFrameKey;
vp9_header.spatial_idx = 1;
vp9_header.picture_id = 5;
vp9_header.temporal_idx = 0;
vp9_header.temporal_up_switch = false;
EXPECT_EQ(kIncomplete, jitter_buffer_->InsertPacket(*packet_, &re));
// Insert first frame with SS data.
packet_->video_header.is_first_packet_in_frame = true;
packet_->markerBit = false;
packet_->seqNum = 65484;
packet_->frameType = kVideoFrameKey;
packet_->video_header.width = 352;
packet_->video_header.height = 288;
vp9_header.spatial_idx = 0;
vp9_header.picture_id = 5;
vp9_header.temporal_idx = 0;
vp9_header.temporal_up_switch = false;
vp9_header.ss_data_available = true;
vp9_header.gof.SetGofInfoVP9(
kTemporalStructureMode2); // kTemporalStructureMode3: 0-1-0-1..
EXPECT_EQ(kCompleteSession, jitter_buffer_->InsertPacket(*packet_, &re));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
EXPECT_EQ(3000U, frame_out->Timestamp());
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
EXPECT_EQ(0, frame_out->CodecSpecific()->codecSpecific.VP9.temporal_idx);
EXPECT_FALSE(
frame_out->CodecSpecific()->codecSpecific.VP9.temporal_up_switch);
jitter_buffer_->ReleaseFrame(frame_out);
frame_out = DecodeCompleteFrame();
EXPECT_EQ(6000U, frame_out->Timestamp());
EXPECT_EQ(kVideoFrameDelta, frame_out->FrameType());
EXPECT_EQ(1, frame_out->CodecSpecific()->codecSpecific.VP9.temporal_idx);
EXPECT_TRUE(frame_out->CodecSpecific()->codecSpecific.VP9.temporal_up_switch);
jitter_buffer_->ReleaseFrame(frame_out);
}
TEST_F(TestBasicJitterBuffer, H264InsertStartCode) {
packet_->frameType = kVideoFrameKey;
packet_->video_header.is_first_packet_in_frame = true;
packet_->markerBit = false;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
packet_->insertStartCode = true;
bool retransmitted = false;
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
// Frame should not be complete.
EXPECT_TRUE(frame_out == NULL);
seq_num_++;
packet_->video_header.is_first_packet_in_frame = false;
packet_->markerBit = true;
packet_->seqNum = seq_num_;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
frame_out = DecodeCompleteFrame();
CheckOutFrame(frame_out, size_ * 2 + 4 * 2, true);
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
}
TEST_F(TestBasicJitterBuffer, SpsAndPpsHandling) {
auto& h264_header =
packet_->video_header.video_type_header.emplace<RTPVideoHeaderH264>();
packet_->timestamp = timestamp_;
packet_->frameType = kVideoFrameKey;
packet_->video_header.is_first_packet_in_frame = true;
packet_->markerBit = true;
packet_->video_header.codec = kVideoCodecH264;
h264_header.nalu_type = H264::NaluType::kIdr;
h264_header.nalus[0].type = H264::NaluType::kIdr;
h264_header.nalus[0].sps_id = -1;
h264_header.nalus[0].pps_id = 0;
h264_header.nalus_length = 1;
bool retransmitted = false;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
// Not decodable since sps and pps are missing.
EXPECT_EQ(nullptr, DecodeCompleteFrame());
timestamp_ += 3000;
packet_->timestamp = timestamp_;
++seq_num_;
packet_->seqNum = seq_num_;
packet_->frameType = kVideoFrameKey;
packet_->video_header.is_first_packet_in_frame = true;
packet_->markerBit = false;
packet_->video_header.codec = kVideoCodecH264;
h264_header.nalu_type = H264::NaluType::kStapA;
h264_header.nalus[0].type = H264::NaluType::kSps;
h264_header.nalus[0].sps_id = 0;
h264_header.nalus[0].pps_id = -1;
h264_header.nalus[1].type = H264::NaluType::kPps;
h264_header.nalus[1].sps_id = 0;
h264_header.nalus[1].pps_id = 0;
h264_header.nalus_length = 2;
// Not complete since the marker bit hasn't been received.
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
++seq_num_;
packet_->seqNum = seq_num_;
packet_->frameType = kVideoFrameKey;
packet_->video_header.is_first_packet_in_frame = false;
packet_->markerBit = true;
packet_->video_header.codec = kVideoCodecH264;
h264_header.nalu_type = H264::NaluType::kIdr;
h264_header.nalus[0].type = H264::NaluType::kIdr;
h264_header.nalus[0].sps_id = -1;
h264_header.nalus[0].pps_id = 0;
h264_header.nalus_length = 1;
// Complete and decodable since the pps and sps are received in the first
// packet of this frame.
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
ASSERT_NE(nullptr, frame_out);
jitter_buffer_->ReleaseFrame(frame_out);
timestamp_ += 3000;
packet_->timestamp = timestamp_;
++seq_num_;
packet_->seqNum = seq_num_;
packet_->frameType = kVideoFrameDelta;
packet_->video_header.is_first_packet_in_frame = true;
packet_->markerBit = true;
packet_->video_header.codec = kVideoCodecH264;
h264_header.nalu_type = H264::NaluType::kSlice;
h264_header.nalus[0].type = H264::NaluType::kSlice;
h264_header.nalus[0].sps_id = -1;
h264_header.nalus[0].pps_id = 0;
h264_header.nalus_length = 1;
// Complete and decodable since sps, pps and key frame has been received.
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
frame_out = DecodeCompleteFrame();
ASSERT_NE(nullptr, frame_out);
jitter_buffer_->ReleaseFrame(frame_out);
}
TEST_F(TestBasicJitterBuffer, DeltaFrame100PacketsWithSeqNumWrap) {
seq_num_ = 0xfff0;
packet_->frameType = kVideoFrameKey;
packet_->video_header.is_first_packet_in_frame = true;
packet_->markerBit = false;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
bool retransmitted = false;
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
EXPECT_TRUE(frame_out == NULL);
int loop = 0;
do {
seq_num_++;
packet_->video_header.is_first_packet_in_frame = false;
packet_->markerBit = false;
packet_->seqNum = seq_num_;
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
frame_out = DecodeCompleteFrame();
EXPECT_TRUE(frame_out == NULL);
loop++;
} while (loop < 98);
seq_num_++;
packet_->video_header.is_first_packet_in_frame = false;
packet_->markerBit = true;
packet_->seqNum = seq_num_;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
frame_out = DecodeCompleteFrame();
CheckOutFrame(frame_out, 100 * size_, false);
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
}
TEST_F(TestBasicJitterBuffer, PacketReorderingReverseWithNegSeqNumWrap) {
// Insert "first" packet last seqnum.
seq_num_ = 10;
packet_->frameType = kVideoFrameKey;
packet_->video_header.is_first_packet_in_frame = false;
packet_->markerBit = true;
packet_->seqNum = seq_num_;
bool retransmitted = false;
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
// Should not be complete.
EXPECT_TRUE(frame_out == NULL);
// Insert 98 frames.
int loop = 0;
do {
seq_num_--;
packet_->video_header.is_first_packet_in_frame = false;
packet_->markerBit = false;
packet_->seqNum = seq_num_;
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
frame_out = DecodeCompleteFrame();
EXPECT_TRUE(frame_out == NULL);
loop++;
} while (loop < 98);
// Insert last packet.
seq_num_--;
packet_->video_header.is_first_packet_in_frame = true;
packet_->markerBit = false;
packet_->seqNum = seq_num_;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
frame_out = DecodeCompleteFrame();
CheckOutFrame(frame_out, 100 * size_, false);
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
}
TEST_F(TestBasicJitterBuffer, TestInsertOldFrame) {
// ------- -------
// | 2 | | 1 |
// ------- -------
// t = 3000 t = 2000
seq_num_ = 2;
timestamp_ = 3000;
packet_->frameType = kVideoFrameKey;
packet_->video_header.is_first_packet_in_frame = true;
packet_->markerBit = true;
packet_->timestamp = timestamp_;
packet_->seqNum = seq_num_;
bool retransmitted = false;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
EXPECT_EQ(3000u, frame_out->Timestamp());
CheckOutFrame(frame_out, size_, false);
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
seq_num_--;
timestamp_ = 2000;
packet_->frameType = kVideoFrameDelta;
packet_->video_header.is_first_packet_in_frame = true;
packet_->markerBit = true;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
EXPECT_EQ(kOldPacket, jitter_buffer_->InsertPacket(*packet_, &retransmitted));
}
TEST_F(TestBasicJitterBuffer, TestInsertOldFrameWithSeqNumWrap) {
// ------- -------
// | 2 | | 1 |
// ------- -------
// t = 3000 t = 0xffffff00
seq_num_ = 2;
timestamp_ = 3000;
packet_->frameType = kVideoFrameKey;
packet_->video_header.is_first_packet_in_frame = true;
packet_->markerBit = true;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
bool retransmitted = false;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
EXPECT_EQ(timestamp_, frame_out->Timestamp());
CheckOutFrame(frame_out, size_, false);
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
seq_num_--;
timestamp_ = 0xffffff00;
packet_->frameType = kVideoFrameDelta;
packet_->video_header.is_first_packet_in_frame = true;
packet_->markerBit = true;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
// This timestamp is old.
EXPECT_EQ(kOldPacket, jitter_buffer_->InsertPacket(*packet_, &retransmitted));
}
TEST_F(TestBasicJitterBuffer, TimestampWrap) {
// --------------- ---------------
// | 1 | 2 | | 3 | 4 |
// --------------- ---------------
// t = 0xffffff00 t = 33*90
timestamp_ = 0xffffff00;
packet_->frameType = kVideoFrameKey;
packet_->video_header.is_first_packet_in_frame = true;
packet_->markerBit = false;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
bool retransmitted = false;
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
EXPECT_TRUE(frame_out == NULL);
seq_num_++;
packet_->video_header.is_first_packet_in_frame = false;
packet_->markerBit = true;
packet_->seqNum = seq_num_;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
frame_out = DecodeCompleteFrame();
CheckOutFrame(frame_out, 2 * size_, false);
jitter_buffer_->ReleaseFrame(frame_out);
seq_num_++;
timestamp_ += 33 * 90;
packet_->frameType = kVideoFrameDelta;
packet_->video_header.is_first_packet_in_frame = true;
packet_->markerBit = false;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
frame_out = DecodeCompleteFrame();
EXPECT_TRUE(frame_out == NULL);
seq_num_++;
packet_->video_header.is_first_packet_in_frame = false;
packet_->markerBit = true;
packet_->seqNum = seq_num_;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
frame_out = DecodeCompleteFrame();
CheckOutFrame(frame_out, 2 * size_, false);
EXPECT_EQ(kVideoFrameDelta, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
}
TEST_F(TestBasicJitterBuffer, 2FrameWithTimestampWrap) {
// ------- -------
// | 1 | | 2 |
// ------- -------
// t = 0xffffff00 t = 2700
timestamp_ = 0xffffff00;
packet_->frameType = kVideoFrameKey;
packet_->video_header.is_first_packet_in_frame = true;
packet_->markerBit = true;
packet_->timestamp = timestamp_;
bool retransmitted = false;
// Insert first frame (session will be complete).
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
// Insert next frame.
seq_num_++;
timestamp_ = 2700;
packet_->frameType = kVideoFrameDelta;
packet_->video_header.is_first_packet_in_frame = true;
packet_->markerBit = true;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
EXPECT_EQ(0xffffff00, frame_out->Timestamp());
CheckOutFrame(frame_out, size_, false);
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
VCMEncodedFrame* frame_out2 = DecodeCompleteFrame();
EXPECT_EQ(2700u, frame_out2->Timestamp());
CheckOutFrame(frame_out2, size_, false);
EXPECT_EQ(kVideoFrameDelta, frame_out2->FrameType());
jitter_buffer_->ReleaseFrame(frame_out2);
}
TEST_F(TestBasicJitterBuffer, Insert2FramesReOrderedWithTimestampWrap) {
// ------- -------
// | 2 | | 1 |
// ------- -------
// t = 2700 t = 0xffffff00
seq_num_ = 2;
timestamp_ = 2700;
packet_->frameType = kVideoFrameDelta;
packet_->video_header.is_first_packet_in_frame = true;
packet_->markerBit = true;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
bool retransmitted = false;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
// Insert second frame
seq_num_--;
timestamp_ = 0xffffff00;
packet_->frameType = kVideoFrameKey;
packet_->video_header.is_first_packet_in_frame = true;
packet_->markerBit = true;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
EXPECT_EQ(0xffffff00, frame_out->Timestamp());
CheckOutFrame(frame_out, size_, false);
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
VCMEncodedFrame* frame_out2 = DecodeCompleteFrame();
EXPECT_EQ(2700u, frame_out2->Timestamp());
CheckOutFrame(frame_out2, size_, false);
EXPECT_EQ(kVideoFrameDelta, frame_out2->FrameType());
jitter_buffer_->ReleaseFrame(frame_out2);
}
TEST_F(TestBasicJitterBuffer, DeltaFrameWithMoreThanMaxNumberOfPackets) {
int loop = 0;
bool firstPacket = true;
bool retransmitted = false;
// Insert kMaxPacketsInJitterBuffer into frame.
do {
seq_num_++;
packet_->video_header.is_first_packet_in_frame = false;
packet_->markerBit = false;
packet_->seqNum = seq_num_;
if (firstPacket) {
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
firstPacket = false;
} else {
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
}
loop++;
} while (loop < kMaxPacketsInSession);
// Max number of packets inserted.
// Insert one more packet.
seq_num_++;
packet_->video_header.is_first_packet_in_frame = false;
packet_->markerBit = true;
packet_->seqNum = seq_num_;
// Insert the packet -> frame recycled.
EXPECT_EQ(kSizeError, jitter_buffer_->InsertPacket(*packet_, &retransmitted));
EXPECT_TRUE(NULL == DecodeCompleteFrame());
}
TEST_F(TestBasicJitterBuffer, ExceedNumOfFrameWithSeqNumWrap) {
// TEST fill JB with more than max number of frame (50 delta frames +
// 51 key frames) with wrap in seq_num_
//
// --------------------------------------------------------------
// | 65485 | 65486 | 65487 | .... | 65535 | 0 | 1 | 2 | .....| 50 |
// --------------------------------------------------------------
// |<-----------delta frames------------->|<------key frames----->|
// Make sure the jitter doesn't request a keyframe after too much non-
// decodable frames.
jitter_buffer_->SetNackMode(kNack, -1, -1);
jitter_buffer_->SetNackSettings(kMaxNumberOfFrames, kMaxNumberOfFrames, 0);
int loop = 0;
seq_num_ = 65485;
uint32_t first_key_frame_timestamp = 0;
bool retransmitted = false;
// Insert MAX_NUMBER_OF_FRAMES frames.
do {
timestamp_ += 33 * 90;
seq_num_++;
packet_->video_header.is_first_packet_in_frame = true;
packet_->markerBit = true;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
if (loop == 50) {
first_key_frame_timestamp = packet_->timestamp;
packet_->frameType = kVideoFrameKey;
}
// Insert frame.
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
loop++;
} while (loop < kMaxNumberOfFrames);
// Max number of frames inserted.
// Insert one more frame.
timestamp_ += 33 * 90;
seq_num_++;
packet_->video_header.is_first_packet_in_frame = true;
packet_->markerBit = true;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
// Now, no free frame - frames will be recycled until first key frame.
EXPECT_EQ(kFlushIndicator,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
EXPECT_EQ(first_key_frame_timestamp, frame_out->Timestamp());
CheckOutFrame(frame_out, size_, false);
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
}
TEST_F(TestBasicJitterBuffer, EmptyLastFrame) {
seq_num_ = 3;
// Insert one empty packet per frame, should never return the last timestamp
// inserted. Only return empty frames in the presence of subsequent frames.
int maxSize = 1000;
bool retransmitted = false;
for (int i = 0; i < maxSize + 10; i++) {
timestamp_ += 33 * 90;
seq_num_++;
packet_->video_header.is_first_packet_in_frame = false;
packet_->markerBit = false;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
packet_->frameType = kEmptyFrame;
EXPECT_EQ(kNoError, jitter_buffer_->InsertPacket(*packet_, &retransmitted));
}
}
TEST_F(TestBasicJitterBuffer, NextFrameWhenIncomplete) {
// Test that a we cannot get incomplete frames from the JB if we haven't
// received the marker bit, unless we have received a packet from a later
// timestamp.
// Start with a complete key frame - insert and decode.
packet_->frameType = kVideoFrameKey;
packet_->video_header.is_first_packet_in_frame = true;
packet_->markerBit = true;
bool retransmitted = false;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
EXPECT_TRUE(frame_out != NULL);
jitter_buffer_->ReleaseFrame(frame_out);
packet_->seqNum += 2;
packet_->timestamp += 33 * 90;
packet_->frameType = kVideoFrameDelta;
packet_->video_header.is_first_packet_in_frame = false;
packet_->markerBit = false;
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
packet_->seqNum += 2;
packet_->timestamp += 33 * 90;
packet_->video_header.is_first_packet_in_frame = true;
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
}
TEST_F(TestRunningJitterBuffer, Full) {
// Make sure the jitter doesn't request a keyframe after too much non-
// decodable frames.
jitter_buffer_->SetNackMode(kNack, -1, -1);
jitter_buffer_->SetNackSettings(kMaxNumberOfFrames, kMaxNumberOfFrames, 0);
// Insert a key frame and decode it.
EXPECT_GE(InsertFrame(kVideoFrameKey), kNoError);
EXPECT_TRUE(DecodeCompleteFrame());
DropFrame(1);
// Fill the jitter buffer.
EXPECT_GE(InsertFrames(kMaxNumberOfFrames, kVideoFrameDelta), kNoError);
// Make sure we can't decode these frames.
EXPECT_FALSE(DecodeCompleteFrame());
// This frame will make the jitter buffer recycle frames until a key frame.
// Since none is found it will have to wait until the next key frame before
// decoding.
EXPECT_EQ(kFlushIndicator, InsertFrame(kVideoFrameDelta));
EXPECT_FALSE(DecodeCompleteFrame());
}
TEST_F(TestRunningJitterBuffer, EmptyPackets) {
// Make sure a frame can get complete even though empty packets are missing.
stream_generator_->GenerateFrame(kVideoFrameKey, 3, 3,
clock_->TimeInMilliseconds());
bool request_key_frame = false;
// Insert empty packet.
EXPECT_EQ(kNoError, InsertPacketAndPop(4));
EXPECT_FALSE(request_key_frame);
// Insert 3 media packets.
EXPECT_EQ(kIncomplete, InsertPacketAndPop(0));
EXPECT_FALSE(request_key_frame);
EXPECT_EQ(kIncomplete, InsertPacketAndPop(0));
EXPECT_FALSE(request_key_frame);
EXPECT_EQ(kCompleteSession, InsertPacketAndPop(0));
EXPECT_FALSE(request_key_frame);
// Insert empty packet.
EXPECT_EQ(kCompleteSession, InsertPacketAndPop(0));
EXPECT_FALSE(request_key_frame);
}
TEST_F(TestRunningJitterBuffer, StatisticsTest) {
FrameCounts frame_stats(jitter_buffer_->FrameStatistics());
EXPECT_EQ(0, frame_stats.delta_frames);
EXPECT_EQ(0, frame_stats.key_frames);
uint32_t framerate = 0;
uint32_t bitrate = 0;
jitter_buffer_->IncomingRateStatistics(&framerate, &bitrate);
EXPECT_EQ(0u, framerate);
EXPECT_EQ(0u, bitrate);
// Insert a couple of key and delta frames.
InsertFrame(kVideoFrameKey);
InsertFrame(kVideoFrameDelta);
InsertFrame(kVideoFrameDelta);
InsertFrame(kVideoFrameKey);
InsertFrame(kVideoFrameDelta);
// Decode some of them to make sure the statistics doesn't depend on frames
// being decoded.
EXPECT_TRUE(DecodeCompleteFrame());
EXPECT_TRUE(DecodeCompleteFrame());
frame_stats = jitter_buffer_->FrameStatistics();
EXPECT_EQ(3, frame_stats.delta_frames);
EXPECT_EQ(2, frame_stats.key_frames);
// Insert 20 more frames to get estimates of bitrate and framerate over
// 1 second.
for (int i = 0; i < 20; ++i) {
InsertFrame(kVideoFrameDelta);
}
jitter_buffer_->IncomingRateStatistics(&framerate, &bitrate);
// TODO(holmer): The current implementation returns the average of the last
// two framerate calculations, which is why it takes two calls to reach the
// actual framerate. This should be fixed.
EXPECT_EQ(kDefaultFrameRate / 2u, framerate);
EXPECT_EQ(kDefaultBitrateKbps, bitrate);
// Insert 25 more frames to get estimates of bitrate and framerate over
// 2 seconds.
for (int i = 0; i < 25; ++i) {
InsertFrame(kVideoFrameDelta);
}
jitter_buffer_->IncomingRateStatistics(&framerate, &bitrate);
EXPECT_EQ(kDefaultFrameRate, framerate);
EXPECT_EQ(kDefaultBitrateKbps, bitrate);
}
TEST_F(TestRunningJitterBuffer, SkipToKeyFrame) {
// Insert delta frames.
EXPECT_GE(InsertFrames(5, kVideoFrameDelta), kNoError);
// Can't decode without a key frame.
EXPECT_FALSE(DecodeCompleteFrame());
InsertFrame(kVideoFrameKey);
// Skip to the next key frame.
EXPECT_TRUE(DecodeCompleteFrame());
}
TEST_F(TestRunningJitterBuffer, DontSkipToKeyFrameIfDecodable) {
InsertFrame(kVideoFrameKey);
EXPECT_TRUE(DecodeCompleteFrame());
const int kNumDeltaFrames = 5;
EXPECT_GE(InsertFrames(kNumDeltaFrames, kVideoFrameDelta), kNoError);
InsertFrame(kVideoFrameKey);
for (int i = 0; i < kNumDeltaFrames + 1; ++i) {
EXPECT_TRUE(DecodeCompleteFrame());
}
}
TEST_F(TestRunningJitterBuffer, KeyDeltaKeyDelta) {
InsertFrame(kVideoFrameKey);
EXPECT_TRUE(DecodeCompleteFrame());
const int kNumDeltaFrames = 5;
EXPECT_GE(InsertFrames(kNumDeltaFrames, kVideoFrameDelta), kNoError);
InsertFrame(kVideoFrameKey);
EXPECT_GE(InsertFrames(kNumDeltaFrames, kVideoFrameDelta), kNoError);
InsertFrame(kVideoFrameKey);
for (int i = 0; i < 2 * (kNumDeltaFrames + 1); ++i) {
EXPECT_TRUE(DecodeCompleteFrame());
}
}
TEST_F(TestRunningJitterBuffer, TwoPacketsNonContinuous) {
InsertFrame(kVideoFrameKey);
EXPECT_TRUE(DecodeCompleteFrame());
stream_generator_->GenerateFrame(kVideoFrameDelta, 1, 0,
clock_->TimeInMilliseconds());
clock_->AdvanceTimeMilliseconds(kDefaultFramePeriodMs);
stream_generator_->GenerateFrame(kVideoFrameDelta, 2, 0,
clock_->TimeInMilliseconds());
EXPECT_EQ(kIncomplete, InsertPacketAndPop(1));
EXPECT_EQ(kCompleteSession, InsertPacketAndPop(1));
EXPECT_FALSE(DecodeCompleteFrame());
EXPECT_EQ(kCompleteSession, InsertPacketAndPop(0));
EXPECT_TRUE(DecodeCompleteFrame());
EXPECT_TRUE(DecodeCompleteFrame());
}
TEST_F(TestJitterBufferNack, EmptyPackets) {
// Make sure empty packets doesn't clog the jitter buffer.
jitter_buffer_->SetNackMode(kNack, media_optimization::kLowRttNackMs, -1);
EXPECT_GE(InsertFrames(kMaxNumberOfFrames, kEmptyFrame), kNoError);
InsertFrame(kVideoFrameKey);
EXPECT_TRUE(DecodeCompleteFrame());
}
TEST_F(TestJitterBufferNack, NackTooOldPackets) {
// Insert a key frame and decode it.
EXPECT_GE(InsertFrame(kVideoFrameKey), kNoError);
EXPECT_TRUE(DecodeCompleteFrame());
// Drop one frame and insert |kNackHistoryLength| to trigger NACKing a too
// old packet.
DropFrame(1);
// Insert a frame which should trigger a recycle until the next key frame.
EXPECT_EQ(kFlushIndicator,
InsertFrames(oldest_packet_to_nack_ + 1, kVideoFrameDelta));
EXPECT_FALSE(DecodeCompleteFrame());
bool request_key_frame = false;
std::vector<uint16_t> nack_list =
jitter_buffer_->GetNackList(&request_key_frame);
// No key frame will be requested since the jitter buffer is empty.
EXPECT_FALSE(request_key_frame);
EXPECT_EQ(0u, nack_list.size());
EXPECT_GE(InsertFrame(kVideoFrameDelta), kNoError);
// Waiting for a key frame.
EXPECT_FALSE(DecodeCompleteFrame());
// The next complete continuous frame isn't a key frame, but we're waiting
// for one.
EXPECT_FALSE(DecodeCompleteFrame());
EXPECT_GE(InsertFrame(kVideoFrameKey), kNoError);
// Skipping ahead to the key frame.
EXPECT_TRUE(DecodeCompleteFrame());
}
TEST_F(TestJitterBufferNack, NackLargeJitterBuffer) {
// Insert a key frame and decode it.
EXPECT_GE(InsertFrame(kVideoFrameKey), kNoError);
EXPECT_TRUE(DecodeCompleteFrame());
// Insert a frame which should trigger a recycle until the next key frame.
EXPECT_GE(InsertFrames(oldest_packet_to_nack_, kVideoFrameDelta), kNoError);
bool request_key_frame = false;
std::vector<uint16_t> nack_list =
jitter_buffer_->GetNackList(&request_key_frame);
// Verify that the jitter buffer does not request a key frame.
EXPECT_FALSE(request_key_frame);
// Verify that no packets are NACKed.
EXPECT_EQ(0u, nack_list.size());
// Verify that we can decode the next frame.
EXPECT_TRUE(DecodeCompleteFrame());
}
TEST_F(TestJitterBufferNack, NackListFull) {
// Insert a key frame and decode it.
EXPECT_GE(InsertFrame(kVideoFrameKey), kNoError);
EXPECT_TRUE(DecodeCompleteFrame());
// Generate and drop |kNackHistoryLength| packets to fill the NACK list.
DropFrame(max_nack_list_size_ + 1);
// Insert a frame which should trigger a recycle until the next key frame.
EXPECT_EQ(kFlushIndicator, InsertFrame(kVideoFrameDelta));
EXPECT_FALSE(DecodeCompleteFrame());
bool request_key_frame = false;
jitter_buffer_->GetNackList(&request_key_frame);
// The jitter buffer is empty, so we won't request key frames until we get a
// packet.
EXPECT_FALSE(request_key_frame);
EXPECT_GE(InsertFrame(kVideoFrameDelta), kNoError);
// Now we have a packet in the jitter buffer, a key frame will be requested
// since it's not a key frame.
jitter_buffer_->GetNackList(&request_key_frame);
// The jitter buffer is empty, so we won't request key frames until we get a
// packet.
EXPECT_TRUE(request_key_frame);
// The next complete continuous frame isn't a key frame, but we're waiting
// for one.
EXPECT_FALSE(DecodeCompleteFrame());
EXPECT_GE(InsertFrame(kVideoFrameKey), kNoError);
// Skipping ahead to the key frame.
EXPECT_TRUE(DecodeCompleteFrame());
}
TEST_F(TestJitterBufferNack, NoNackListReturnedBeforeFirstDecode) {
DropFrame(10);
// Insert a frame and try to generate a NACK list. Shouldn't get one.
EXPECT_GE(InsertFrame(kVideoFrameDelta), kNoError);
bool request_key_frame = false;
std::vector<uint16_t> nack_list =
jitter_buffer_->GetNackList(&request_key_frame);
// No list generated, and a key frame request is signaled.
EXPECT_EQ(0u, nack_list.size());
EXPECT_TRUE(request_key_frame);
}
TEST_F(TestJitterBufferNack, NackListBuiltBeforeFirstDecode) {
stream_generator_->Init(0, clock_->TimeInMilliseconds());
InsertFrame(kVideoFrameKey);
stream_generator_->GenerateFrame(kVideoFrameDelta, 2, 0,
clock_->TimeInMilliseconds());
stream_generator_->NextPacket(NULL); // Drop packet.
EXPECT_EQ(kIncomplete, InsertPacketAndPop(0));
EXPECT_TRUE(DecodeCompleteFrame());
bool extended = false;
std::vector<uint16_t> nack_list = jitter_buffer_->GetNackList(&extended);
EXPECT_EQ(1u, nack_list.size());
}
TEST_F(TestJitterBufferNack, VerifyRetransmittedFlag) {
stream_generator_->Init(0, clock_->TimeInMilliseconds());
stream_generator_->GenerateFrame(kVideoFrameKey, 3, 0,
clock_->TimeInMilliseconds());
VCMPacket packet;
stream_generator_->PopPacket(&packet, 0);
bool retransmitted = false;
EXPECT_EQ(kIncomplete, jitter_buffer_->InsertPacket(packet, &retransmitted));
EXPECT_FALSE(retransmitted);
// Drop second packet.
stream_generator_->PopPacket(&packet, 1);
EXPECT_EQ(kIncomplete, jitter_buffer_->InsertPacket(packet, &retransmitted));
EXPECT_FALSE(retransmitted);
EXPECT_FALSE(DecodeCompleteFrame());
bool extended = false;
std::vector<uint16_t> nack_list = jitter_buffer_->GetNackList(&extended);
uint16_t seq_num;
EXPECT_EQ(1u, nack_list.size());
seq_num = nack_list[0];
stream_generator_->PopPacket(&packet, 0);
EXPECT_EQ(packet.seqNum, seq_num);
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(packet, &retransmitted));
EXPECT_TRUE(retransmitted);
EXPECT_TRUE(DecodeCompleteFrame());
}
TEST_F(TestJitterBufferNack, UseNackToRecoverFirstKeyFrame) {
stream_generator_->Init(0, clock_->TimeInMilliseconds());
stream_generator_->GenerateFrame(kVideoFrameKey, 3, 0,
clock_->TimeInMilliseconds());
EXPECT_EQ(kIncomplete, InsertPacketAndPop(0));
// Drop second packet.
EXPECT_EQ(kIncomplete, InsertPacketAndPop(1));
EXPECT_FALSE(DecodeCompleteFrame());
bool extended = false;
std::vector<uint16_t> nack_list = jitter_buffer_->GetNackList(&extended);
uint16_t seq_num;
ASSERT_EQ(1u, nack_list.size());
seq_num = nack_list[0];
VCMPacket packet;
stream_generator_->GetPacket(&packet, 0);
EXPECT_EQ(packet.seqNum, seq_num);
}
TEST_F(TestJitterBufferNack, UseNackToRecoverFirstKeyFrameSecondInQueue) {
VCMPacket packet;
stream_generator_->Init(0, clock_->TimeInMilliseconds());
// First frame is delta.
stream_generator_->GenerateFrame(kVideoFrameDelta, 3, 0,
clock_->TimeInMilliseconds());
EXPECT_EQ(kIncomplete, InsertPacketAndPop(0));
// Drop second packet in frame.
ASSERT_TRUE(stream_generator_->PopPacket(&packet, 0));
EXPECT_EQ(kIncomplete, InsertPacketAndPop(0));
// Second frame is key.
stream_generator_->GenerateFrame(kVideoFrameKey, 3, 0,
clock_->TimeInMilliseconds() + 10);
EXPECT_EQ(kIncomplete, InsertPacketAndPop(0));
// Drop second packet in frame.
EXPECT_EQ(kIncomplete, InsertPacketAndPop(1));
EXPECT_FALSE(DecodeCompleteFrame());
bool extended = false;
std::vector<uint16_t> nack_list = jitter_buffer_->GetNackList(&extended);
uint16_t seq_num;
ASSERT_EQ(1u, nack_list.size());
seq_num = nack_list[0];
stream_generator_->GetPacket(&packet, 0);
EXPECT_EQ(packet.seqNum, seq_num);
}
TEST_F(TestJitterBufferNack, NormalOperation) {
EXPECT_EQ(kNack, jitter_buffer_->nack_mode());
EXPECT_GE(InsertFrame(kVideoFrameKey), kNoError);
EXPECT_TRUE(DecodeCompleteFrame());
// ----------------------------------------------------------------
// | 1 | 2 | .. | 8 | 9 | x | 11 | 12 | .. | 19 | x | 21 | .. | 100 |
// ----------------------------------------------------------------
stream_generator_->GenerateFrame(kVideoFrameKey, 100, 0,
clock_->TimeInMilliseconds());
clock_->AdvanceTimeMilliseconds(kDefaultFramePeriodMs);
EXPECT_EQ(kIncomplete, InsertPacketAndPop(0));
// Verify that the frame is incomplete.
EXPECT_FALSE(DecodeCompleteFrame());
while (stream_generator_->PacketsRemaining() > 1) {
if (stream_generator_->NextSequenceNumber() % 10 != 0) {
EXPECT_EQ(kIncomplete, InsertPacketAndPop(0));
} else {
stream_generator_->NextPacket(NULL); // Drop packet
}
}
EXPECT_EQ(kIncomplete, InsertPacketAndPop(0));
EXPECT_EQ(0, stream_generator_->PacketsRemaining());
EXPECT_FALSE(DecodeCompleteFrame());
bool request_key_frame = false;
// Verify the NACK list.
std::vector<uint16_t> nack_list =
jitter_buffer_->GetNackList(&request_key_frame);
const size_t kExpectedNackSize = 9;
ASSERT_EQ(kExpectedNackSize, nack_list.size());
for (size_t i = 0; i < nack_list.size(); ++i)
EXPECT_EQ((1 + i) * 10, nack_list[i]);
}
TEST_F(TestJitterBufferNack, NormalOperationWrap) {
bool request_key_frame = false;
// ------- ------------------------------------------------------------
// | 65532 | | 65533 | 65534 | 65535 | x | 1 | .. | 9 | x | 11 |.....| 96 |
// ------- ------------------------------------------------------------
stream_generator_->Init(65532, clock_->TimeInMilliseconds());
InsertFrame(kVideoFrameKey);
EXPECT_FALSE(request_key_frame);
EXPECT_TRUE(DecodeCompleteFrame());
stream_generator_->GenerateFrame(kVideoFrameDelta, 100, 0,
clock_->TimeInMilliseconds());
EXPECT_EQ(kIncomplete, InsertPacketAndPop(0));
while (stream_generator_->PacketsRemaining() > 1) {
if (stream_generator_->NextSequenceNumber() % 10 != 0) {
EXPECT_EQ(kIncomplete, InsertPacketAndPop(0));
EXPECT_FALSE(request_key_frame);
} else {
stream_generator_->NextPacket(NULL); // Drop packet
}
}
EXPECT_EQ(kIncomplete, InsertPacketAndPop(0));
EXPECT_FALSE(request_key_frame);
EXPECT_EQ(0, stream_generator_->PacketsRemaining());
EXPECT_FALSE(DecodeCompleteFrame());
EXPECT_FALSE(DecodeCompleteFrame());
bool extended = false;
std::vector<uint16_t> nack_list = jitter_buffer_->GetNackList(&extended);
// Verify the NACK list.
const size_t kExpectedNackSize = 10;
ASSERT_EQ(kExpectedNackSize, nack_list.size());
for (size_t i = 0; i < nack_list.size(); ++i)
EXPECT_EQ(i * 10, nack_list[i]);
}
TEST_F(TestJitterBufferNack, NormalOperationWrap2) {
bool request_key_frame = false;
// -----------------------------------
// | 65532 | 65533 | 65534 | x | 0 | 1 |
// -----------------------------------
stream_generator_->Init(65532, clock_->TimeInMilliseconds());
InsertFrame(kVideoFrameKey);
EXPECT_FALSE(request_key_frame);
EXPECT_TRUE(DecodeCompleteFrame());
stream_generator_->GenerateFrame(kVideoFrameDelta, 1, 0,
clock_->TimeInMilliseconds());
clock_->AdvanceTimeMilliseconds(kDefaultFramePeriodMs);
for (int i = 0; i < 5; ++i) {
if (stream_generator_->NextSequenceNumber() != 65535) {
EXPECT_EQ(kCompleteSession, InsertPacketAndPop(0));
EXPECT_FALSE(request_key_frame);
} else {
stream_generator_->NextPacket(NULL); // Drop packet
}
stream_generator_->GenerateFrame(kVideoFrameDelta, 1, 0,
clock_->TimeInMilliseconds());
clock_->AdvanceTimeMilliseconds(kDefaultFramePeriodMs);
}
EXPECT_EQ(kCompleteSession, InsertPacketAndPop(0));
EXPECT_FALSE(request_key_frame);
bool extended = false;
std::vector<uint16_t> nack_list = jitter_buffer_->GetNackList(&extended);
// Verify the NACK list.
ASSERT_EQ(1u, nack_list.size());
EXPECT_EQ(65535, nack_list[0]);
}
TEST_F(TestJitterBufferNack, ResetByFutureKeyFrameDoesntError) {
stream_generator_->Init(0, clock_->TimeInMilliseconds());
InsertFrame(kVideoFrameKey);
EXPECT_TRUE(DecodeCompleteFrame());
bool extended = false;
std::vector<uint16_t> nack_list = jitter_buffer_->GetNackList(&extended);
EXPECT_EQ(0u, nack_list.size());
// Far-into-the-future video frame, could be caused by resetting the encoder
// or otherwise restarting. This should not fail when error when the packet is
// a keyframe, even if all of the nack list needs to be flushed.
stream_generator_->Init(10000, clock_->TimeInMilliseconds());
clock_->AdvanceTimeMilliseconds(kDefaultFramePeriodMs);
InsertFrame(kVideoFrameKey);
EXPECT_TRUE(DecodeCompleteFrame());
nack_list = jitter_buffer_->GetNackList(&extended);
EXPECT_EQ(0u, nack_list.size());
// Stream should be decodable from this point.
clock_->AdvanceTimeMilliseconds(kDefaultFramePeriodMs);
InsertFrame(kVideoFrameDelta);
EXPECT_TRUE(DecodeCompleteFrame());
nack_list = jitter_buffer_->GetNackList(&extended);
EXPECT_EQ(0u, nack_list.size());
}
} // namespace webrtc