webrtc/modules/audio_processing/aec3/render_delay_controller_unittest.cc
Gustaf Ullberg e47433f017 AEC3: Remove legacy render buffering
This CL removes the legacy, no longer used, render buffering code. It
also removes four unused parameters from the AEC3 config. The change
is tested for bit-exactness.

Bug: webrtc:8671
Change-Id: I2bb6cb7a1097863f228767d757d551c00593bb00
Reviewed-on: https://webrtc-review.googlesource.com/c/119701
Reviewed-by: Henrik Lundin <henrik.lundin@webrtc.org>
Reviewed-by: Per Åhgren <peah@webrtc.org>
Commit-Queue: Gustaf Ullberg <gustaf@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#26399}
2019-01-25 08:31:12 +00:00

320 lines
13 KiB
C++

/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/render_delay_controller.h"
#include <algorithm>
#include <memory>
#include <string>
#include <vector>
#include "modules/audio_processing/aec3/aec3_common.h"
#include "modules/audio_processing/aec3/block_processor.h"
#include "modules/audio_processing/aec3/decimator.h"
#include "modules/audio_processing/aec3/render_delay_buffer.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "modules/audio_processing/test/echo_canceller_test_tools.h"
#include "rtc_base/random.h"
#include "rtc_base/strings/string_builder.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
std::string ProduceDebugText(int sample_rate_hz) {
rtc::StringBuilder ss;
ss << "Sample rate: " << sample_rate_hz;
return ss.Release();
}
std::string ProduceDebugText(int sample_rate_hz, size_t delay) {
rtc::StringBuilder ss;
ss << ProduceDebugText(sample_rate_hz) << ", Delay: " << delay;
return ss.Release();
}
constexpr size_t kDownSamplingFactors[] = {2, 4, 8};
} // namespace
// Verifies the output of GetDelay when there are no AnalyzeRender calls.
TEST(RenderDelayController, NoRenderSignal) {
std::vector<float> block(kBlockSize, 0.f);
EchoCanceller3Config config;
absl::optional<int> echo_remover_delay_;
for (size_t num_matched_filters = 4; num_matched_filters == 10;
num_matched_filters++) {
for (auto down_sampling_factor : kDownSamplingFactors) {
config.delay.down_sampling_factor = down_sampling_factor;
config.delay.num_filters = num_matched_filters;
for (auto rate : {8000, 16000, 32000, 48000}) {
SCOPED_TRACE(ProduceDebugText(rate));
std::unique_ptr<RenderDelayBuffer> delay_buffer(
RenderDelayBuffer::Create(config, NumBandsForRate(rate)));
std::unique_ptr<RenderDelayController> delay_controller(
RenderDelayController::Create(config, rate));
for (size_t k = 0; k < 100; ++k) {
auto delay = delay_controller->GetDelay(
delay_buffer->GetDownsampledRenderBuffer(), delay_buffer->Delay(),
echo_remover_delay_, block);
EXPECT_FALSE(delay->delay);
}
}
}
}
}
// Verifies the basic API call sequence.
TEST(RenderDelayController, BasicApiCalls) {
std::vector<float> capture_block(kBlockSize, 0.f);
absl::optional<DelayEstimate> delay_blocks;
absl::optional<int> echo_remover_delay;
for (size_t num_matched_filters = 4; num_matched_filters == 10;
num_matched_filters++) {
for (auto down_sampling_factor : kDownSamplingFactors) {
EchoCanceller3Config config;
config.delay.down_sampling_factor = down_sampling_factor;
config.delay.num_filters = num_matched_filters;
for (auto rate : {8000, 16000, 32000, 48000}) {
std::vector<std::vector<float>> render_block(
NumBandsForRate(rate), std::vector<float>(kBlockSize, 0.f));
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
RenderDelayBuffer::Create(config, NumBandsForRate(rate)));
std::unique_ptr<RenderDelayController> delay_controller(
RenderDelayController::Create(EchoCanceller3Config(), rate));
for (size_t k = 0; k < 10; ++k) {
render_delay_buffer->Insert(render_block);
render_delay_buffer->PrepareCaptureProcessing();
delay_blocks = delay_controller->GetDelay(
render_delay_buffer->GetDownsampledRenderBuffer(),
render_delay_buffer->Delay(), echo_remover_delay, capture_block);
}
EXPECT_TRUE(delay_blocks);
EXPECT_FALSE(delay_blocks->delay);
}
}
}
}
// Verifies that the RenderDelayController is able to align the signals for
// simple timeshifts between the signals.
TEST(RenderDelayController, Alignment) {
Random random_generator(42U);
absl::optional<int> echo_remover_delay;
std::vector<float> capture_block(kBlockSize, 0.f);
for (size_t num_matched_filters = 4; num_matched_filters == 10;
num_matched_filters++) {
for (auto down_sampling_factor : kDownSamplingFactors) {
EchoCanceller3Config config;
config.delay.down_sampling_factor = down_sampling_factor;
config.delay.num_filters = num_matched_filters;
for (auto rate : {8000, 16000, 32000, 48000}) {
std::vector<std::vector<float>> render_block(
NumBandsForRate(rate), std::vector<float>(kBlockSize, 0.f));
for (size_t delay_samples : {15, 50, 150, 200, 800, 4000}) {
absl::optional<DelayEstimate> delay_blocks;
SCOPED_TRACE(ProduceDebugText(rate, delay_samples));
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
RenderDelayBuffer::Create(config, NumBandsForRate(rate)));
std::unique_ptr<RenderDelayController> delay_controller(
RenderDelayController::Create(config, rate));
DelayBuffer<float> signal_delay_buffer(delay_samples);
for (size_t k = 0; k < (400 + delay_samples / kBlockSize); ++k) {
RandomizeSampleVector(&random_generator, render_block[0]);
signal_delay_buffer.Delay(render_block[0], capture_block);
render_delay_buffer->Insert(render_block);
render_delay_buffer->PrepareCaptureProcessing();
delay_blocks = delay_controller->GetDelay(
render_delay_buffer->GetDownsampledRenderBuffer(),
render_delay_buffer->Delay(), echo_remover_delay,
capture_block);
}
ASSERT_TRUE(!!delay_blocks);
constexpr int kDelayHeadroomBlocks = 1;
size_t expected_delay_blocks =
std::max(0, static_cast<int>(delay_samples / kBlockSize) -
kDelayHeadroomBlocks);
EXPECT_EQ(expected_delay_blocks, delay_blocks->delay);
}
}
}
}
}
// Verifies that the RenderDelayController is able to properly handle noncausal
// delays.
TEST(RenderDelayController, NonCausalAlignment) {
Random random_generator(42U);
absl::optional<int> echo_remover_delay;
for (size_t num_matched_filters = 4; num_matched_filters == 10;
num_matched_filters++) {
for (auto down_sampling_factor : kDownSamplingFactors) {
EchoCanceller3Config config;
config.delay.down_sampling_factor = down_sampling_factor;
config.delay.num_filters = num_matched_filters;
for (auto rate : {8000, 16000, 32000, 48000}) {
std::vector<std::vector<float>> render_block(
NumBandsForRate(rate), std::vector<float>(kBlockSize, 0.f));
std::vector<std::vector<float>> capture_block(
NumBandsForRate(rate), std::vector<float>(kBlockSize, 0.f));
for (int delay_samples : {-15, -50, -150, -200}) {
absl::optional<DelayEstimate> delay_blocks;
SCOPED_TRACE(ProduceDebugText(rate, -delay_samples));
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
RenderDelayBuffer::Create(config, NumBandsForRate(rate)));
std::unique_ptr<RenderDelayController> delay_controller(
RenderDelayController::Create(EchoCanceller3Config(), rate));
DelayBuffer<float> signal_delay_buffer(-delay_samples);
for (int k = 0;
k < (400 - delay_samples / static_cast<int>(kBlockSize)); ++k) {
RandomizeSampleVector(&random_generator, capture_block[0]);
signal_delay_buffer.Delay(capture_block[0], render_block[0]);
render_delay_buffer->Insert(render_block);
render_delay_buffer->PrepareCaptureProcessing();
delay_blocks = delay_controller->GetDelay(
render_delay_buffer->GetDownsampledRenderBuffer(),
render_delay_buffer->Delay(), echo_remover_delay,
capture_block[0]);
}
ASSERT_FALSE(delay_blocks);
}
}
}
}
}
// Verifies that the RenderDelayController is able to align the signals for
// simple timeshifts between the signals when there is jitter in the API calls.
TEST(RenderDelayController, AlignmentWithJitter) {
Random random_generator(42U);
absl::optional<int> echo_remover_delay;
std::vector<float> capture_block(kBlockSize, 0.f);
for (size_t num_matched_filters = 4; num_matched_filters == 10;
num_matched_filters++) {
for (auto down_sampling_factor : kDownSamplingFactors) {
EchoCanceller3Config config;
config.delay.down_sampling_factor = down_sampling_factor;
config.delay.num_filters = num_matched_filters;
for (auto rate : {8000, 16000, 32000, 48000}) {
std::vector<std::vector<float>> render_block(
NumBandsForRate(rate), std::vector<float>(kBlockSize, 0.f));
for (size_t delay_samples : {15, 50, 300, 800}) {
absl::optional<DelayEstimate> delay_blocks;
SCOPED_TRACE(ProduceDebugText(rate, delay_samples));
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
RenderDelayBuffer::Create(config, NumBandsForRate(rate)));
std::unique_ptr<RenderDelayController> delay_controller(
RenderDelayController::Create(config, rate));
DelayBuffer<float> signal_delay_buffer(delay_samples);
constexpr size_t kMaxTestJitterBlocks = 26;
for (size_t j = 0;
j <
(1000 + delay_samples / kBlockSize) / kMaxTestJitterBlocks + 1;
++j) {
std::vector<std::vector<float>> capture_block_buffer;
for (size_t k = 0; k < (kMaxTestJitterBlocks - 1); ++k) {
RandomizeSampleVector(&random_generator, render_block[0]);
signal_delay_buffer.Delay(render_block[0], capture_block);
capture_block_buffer.push_back(capture_block);
render_delay_buffer->Insert(render_block);
}
for (size_t k = 0; k < (kMaxTestJitterBlocks - 1); ++k) {
render_delay_buffer->PrepareCaptureProcessing();
delay_blocks = delay_controller->GetDelay(
render_delay_buffer->GetDownsampledRenderBuffer(),
render_delay_buffer->Delay(), echo_remover_delay,
capture_block_buffer[k]);
}
}
constexpr int kDelayHeadroomBlocks = 1;
size_t expected_delay_blocks =
std::max(0, static_cast<int>(delay_samples / kBlockSize) -
kDelayHeadroomBlocks);
if (expected_delay_blocks < 2) {
expected_delay_blocks = 0;
}
ASSERT_TRUE(delay_blocks);
EXPECT_EQ(expected_delay_blocks, delay_blocks->delay);
}
}
}
}
}
// Verifies the initial value for the AlignmentHeadroomSamples.
TEST(RenderDelayController, InitialHeadroom) {
std::vector<float> render_block(kBlockSize, 0.f);
std::vector<float> capture_block(kBlockSize, 0.f);
for (size_t num_matched_filters = 4; num_matched_filters == 10;
num_matched_filters++) {
for (auto down_sampling_factor : kDownSamplingFactors) {
EchoCanceller3Config config;
config.delay.down_sampling_factor = down_sampling_factor;
config.delay.num_filters = num_matched_filters;
for (auto rate : {8000, 16000, 32000, 48000}) {
SCOPED_TRACE(ProduceDebugText(rate));
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
RenderDelayBuffer::Create(config, NumBandsForRate(rate)));
std::unique_ptr<RenderDelayController> delay_controller(
RenderDelayController::Create(config, rate));
}
}
}
}
#if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID)
// Verifies the check for the capture signal block size.
TEST(RenderDelayController, WrongCaptureSize) {
std::vector<float> block(kBlockSize - 1, 0.f);
EchoCanceller3Config config;
absl::optional<int> echo_remover_delay;
for (auto rate : {8000, 16000, 32000, 48000}) {
SCOPED_TRACE(ProduceDebugText(rate));
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
RenderDelayBuffer::Create(config, NumBandsForRate(rate)));
EXPECT_DEATH(
std::unique_ptr<RenderDelayController>(
RenderDelayController::Create(EchoCanceller3Config(), rate))
->GetDelay(render_delay_buffer->GetDownsampledRenderBuffer(),
render_delay_buffer->Delay(), echo_remover_delay, block),
"");
}
}
// Verifies the check for correct sample rate.
// TODO(peah): Re-enable the test once the issue with memory leaks during DEATH
// tests on test bots has been fixed.
TEST(RenderDelayController, DISABLED_WrongSampleRate) {
for (auto rate : {-1, 0, 8001, 16001}) {
SCOPED_TRACE(ProduceDebugText(rate));
EchoCanceller3Config config;
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
RenderDelayBuffer::Create(config, NumBandsForRate(rate)));
EXPECT_DEATH(
std::unique_ptr<RenderDelayController>(
RenderDelayController::Create(EchoCanceller3Config(), rate)),
"");
}
}
#endif
} // namespace webrtc