webrtc/modules/audio_coding/codecs/opus/opus_unittest.cc
Alex Loiko e5b94160b5 Decoder for multistream Opus.
See https://webrtc-review.googlesource.com/c/src/+/121764 for the
overall vision.

This CL adds a multistream Opus decoder. It's a new code-path to not
interfere with the standard Opus decoder. We introduce new SDP syntax,
which uses terminology of RFC 7845. We also set up the decoder side to
parse it. The encoder part will come in a later CL.

E.g. this is the new SDP syntax for 6.1 surround sound:
"multiopus/48000/6 channel_mapping=0,4,1,2,3,5 num_streams=4 coupled_streams=2"

Bug: webrtc:8649
Change-Id: Ifbc584cbb6d07aed373f223512a20d6d72cec5ec
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/129768
Commit-Queue: Alex Loiko <aleloi@webrtc.org>
Reviewed-by: Oskar Sundbom <ossu@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#27493}
2019-04-08 16:15:37 +00:00

899 lines
33 KiB
C++

/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <memory>
#include <string>
#include "modules/audio_coding/codecs/opus/opus_inst.h"
#include "modules/audio_coding/codecs/opus/opus_interface.h"
#include "modules/audio_coding/neteq/tools/audio_loop.h"
#include "rtc_base/checks.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "test/gtest.h"
#include "test/testsupport/file_utils.h"
namespace webrtc {
namespace {
// Equivalent to SDP params
// {{"channel_mapping", "0,1,2,3"}, {"coupled_streams", "2"}}.
constexpr unsigned char kQuadChannelMapping[] = {0, 1, 2, 3};
constexpr int kQuadTotalStreams = 2;
constexpr int kQuadCoupledStreams = 2;
constexpr unsigned char kStereoChannelMapping[] = {0, 1};
constexpr int kStereoTotalStreams = 1;
constexpr int kStereoCoupledStreams = 1;
constexpr unsigned char kMonoChannelMapping[] = {0};
constexpr int kMonoTotalStreams = 1;
constexpr int kMonoCoupledStreams = 0;
void CreateSingleOrMultiStreamEncoder(WebRtcOpusEncInst** opus_encoder,
int channels,
int application,
bool force_multistream = false) {
if (!force_multistream && (channels == 1 || channels == 2)) {
EXPECT_EQ(0, WebRtcOpus_EncoderCreate(opus_encoder, channels, application));
} else if (force_multistream && channels == 1) {
EXPECT_EQ(0, WebRtcOpus_MultistreamEncoderCreate(
opus_encoder, channels, application, kMonoTotalStreams,
kMonoCoupledStreams, kMonoChannelMapping));
} else if (force_multistream && channels == 2) {
EXPECT_EQ(0, WebRtcOpus_MultistreamEncoderCreate(
opus_encoder, channels, application, kStereoTotalStreams,
kStereoCoupledStreams, kStereoChannelMapping));
} else if (channels == 4) {
EXPECT_EQ(0, WebRtcOpus_MultistreamEncoderCreate(
opus_encoder, channels, application, kQuadTotalStreams,
kQuadCoupledStreams, kQuadChannelMapping));
} else {
EXPECT_TRUE(false) << channels;
}
}
void CreateSingleOrMultiStreamDecoder(WebRtcOpusDecInst** opus_decoder,
int channels,
bool force_multistream = false) {
if (!force_multistream && (channels == 1 || channels == 2)) {
EXPECT_EQ(0, WebRtcOpus_DecoderCreate(opus_decoder, channels));
} else if (channels == 1) {
EXPECT_EQ(0, WebRtcOpus_MultistreamDecoderCreate(
opus_decoder, channels, kMonoTotalStreams,
kMonoCoupledStreams, kMonoChannelMapping));
} else if (channels == 2) {
EXPECT_EQ(0, WebRtcOpus_MultistreamDecoderCreate(
opus_decoder, channels, kStereoTotalStreams,
kStereoCoupledStreams, kStereoChannelMapping));
} else if (channels == 4) {
EXPECT_EQ(0, WebRtcOpus_MultistreamDecoderCreate(
opus_decoder, channels, kQuadTotalStreams,
kQuadCoupledStreams, kQuadChannelMapping));
} else {
EXPECT_TRUE(false) << channels;
}
}
} // namespace
using test::AudioLoop;
using ::testing::TestWithParam;
using ::testing::Values;
using ::testing::Combine;
// Maximum number of bytes in output bitstream.
const size_t kMaxBytes = 2000;
// Sample rate of Opus.
const size_t kOpusRateKhz = 48;
// Number of samples-per-channel in a 20 ms frame, sampled at 48 kHz.
const size_t kOpus20msFrameSamples = kOpusRateKhz * 20;
// Number of samples-per-channel in a 10 ms frame, sampled at 48 kHz.
const size_t kOpus10msFrameSamples = kOpusRateKhz * 10;
class OpusTest : public TestWithParam<::testing::tuple<int, int, bool>> {
protected:
OpusTest();
void TestDtxEffect(bool dtx, int block_length_ms);
void TestCbrEffect(bool dtx, int block_length_ms);
// Prepare |speech_data_| for encoding, read from a hard-coded file.
// After preparation, |speech_data_.GetNextBlock()| returns a pointer to a
// block of |block_length_ms| milliseconds. The data is looped every
// |loop_length_ms| milliseconds.
void PrepareSpeechData(size_t channel,
int block_length_ms,
int loop_length_ms);
int EncodeDecode(WebRtcOpusEncInst* encoder,
rtc::ArrayView<const int16_t> input_audio,
WebRtcOpusDecInst* decoder,
int16_t* output_audio,
int16_t* audio_type);
void SetMaxPlaybackRate(WebRtcOpusEncInst* encoder,
opus_int32 expect,
int32_t set);
void CheckAudioBounded(const int16_t* audio,
size_t samples,
size_t channels,
uint16_t bound) const;
WebRtcOpusEncInst* opus_encoder_;
WebRtcOpusDecInst* opus_decoder_;
AudioLoop speech_data_;
uint8_t bitstream_[kMaxBytes];
size_t encoded_bytes_;
size_t channels_;
int application_;
bool force_multistream_;
};
OpusTest::OpusTest()
: opus_encoder_(NULL),
opus_decoder_(NULL),
encoded_bytes_(0),
channels_(static_cast<size_t>(::testing::get<0>(GetParam()))),
application_(::testing::get<1>(GetParam())),
force_multistream_(::testing::get<2>(GetParam())) {}
void OpusTest::PrepareSpeechData(size_t channel,
int block_length_ms,
int loop_length_ms) {
std::map<int, std::string> channel_to_basename = {
{1, "audio_coding/testfile32kHz"},
{2, "audio_coding/teststereo32kHz"},
{4, "audio_coding/speech_4_channels_48k_one_second"}};
std::map<int, std::string> channel_to_suffix = {
{1, "pcm"}, {2, "pcm"}, {4, "wav"}};
const std::string file_name = webrtc::test::ResourcePath(
channel_to_basename[channel], channel_to_suffix[channel]);
if (loop_length_ms < block_length_ms) {
loop_length_ms = block_length_ms;
}
EXPECT_TRUE(speech_data_.Init(file_name,
loop_length_ms * kOpusRateKhz * channel,
block_length_ms * kOpusRateKhz * channel));
}
void OpusTest::SetMaxPlaybackRate(WebRtcOpusEncInst* encoder,
opus_int32 expect,
int32_t set) {
opus_int32 bandwidth;
EXPECT_EQ(0, WebRtcOpus_SetMaxPlaybackRate(opus_encoder_, set));
EXPECT_EQ(0, WebRtcOpus_GetMaxPlaybackRate(opus_encoder_, &bandwidth));
EXPECT_EQ(expect, bandwidth);
}
void OpusTest::CheckAudioBounded(const int16_t* audio,
size_t samples,
size_t channels,
uint16_t bound) const {
for (size_t i = 0; i < samples; ++i) {
for (size_t c = 0; c < channels; ++c) {
ASSERT_GE(audio[i * channels + c], -bound);
ASSERT_LE(audio[i * channels + c], bound);
}
}
}
int OpusTest::EncodeDecode(WebRtcOpusEncInst* encoder,
rtc::ArrayView<const int16_t> input_audio,
WebRtcOpusDecInst* decoder,
int16_t* output_audio,
int16_t* audio_type) {
int encoded_bytes_int =
WebRtcOpus_Encode(encoder, input_audio.data(),
rtc::CheckedDivExact(input_audio.size(), channels_),
kMaxBytes, bitstream_);
EXPECT_GE(encoded_bytes_int, 0);
encoded_bytes_ = static_cast<size_t>(encoded_bytes_int);
int est_len = WebRtcOpus_DurationEst(decoder, bitstream_, encoded_bytes_);
int act_len = WebRtcOpus_Decode(decoder, bitstream_, encoded_bytes_,
output_audio, audio_type);
EXPECT_EQ(est_len, act_len);
return act_len;
}
// Test if encoder/decoder can enter DTX mode properly and do not enter DTX when
// they should not. This test is signal dependent.
void OpusTest::TestDtxEffect(bool dtx, int block_length_ms) {
PrepareSpeechData(channels_, block_length_ms, 2000);
const size_t samples = kOpusRateKhz * block_length_ms;
// Create encoder memory.
CreateSingleOrMultiStreamEncoder(&opus_encoder_, channels_, application_,
force_multistream_);
CreateSingleOrMultiStreamDecoder(&opus_decoder_, channels_,
force_multistream_);
// Set bitrate.
EXPECT_EQ(
0, WebRtcOpus_SetBitRate(opus_encoder_, channels_ == 1 ? 32000 : 64000));
// Set input audio as silence.
std::vector<int16_t> silence(samples * channels_, 0);
// Setting DTX.
EXPECT_EQ(0, dtx ? WebRtcOpus_EnableDtx(opus_encoder_)
: WebRtcOpus_DisableDtx(opus_encoder_));
int16_t audio_type;
int16_t* output_data_decode = new int16_t[samples * channels_];
for (int i = 0; i < 100; ++i) {
EXPECT_EQ(samples, static_cast<size_t>(EncodeDecode(
opus_encoder_, speech_data_.GetNextBlock(),
opus_decoder_, output_data_decode, &audio_type)));
// If not DTX, it should never enter DTX mode. If DTX, we do not care since
// whether it enters DTX depends on the signal type.
if (!dtx) {
EXPECT_GT(encoded_bytes_, 1U);
EXPECT_EQ(0, opus_encoder_->in_dtx_mode);
EXPECT_EQ(0, opus_decoder_->in_dtx_mode);
EXPECT_EQ(0, audio_type); // Speech.
}
}
// We input some silent segments. In DTX mode, the encoder will stop sending.
// However, DTX may happen after a while.
for (int i = 0; i < 30; ++i) {
EXPECT_EQ(samples, static_cast<size_t>(
EncodeDecode(opus_encoder_, silence, opus_decoder_,
output_data_decode, &audio_type)));
if (!dtx) {
EXPECT_GT(encoded_bytes_, 1U);
EXPECT_EQ(0, opus_encoder_->in_dtx_mode);
EXPECT_EQ(0, opus_decoder_->in_dtx_mode);
EXPECT_EQ(0, audio_type); // Speech.
} else if (encoded_bytes_ == 1) {
EXPECT_EQ(1, opus_encoder_->in_dtx_mode);
EXPECT_EQ(1, opus_decoder_->in_dtx_mode);
EXPECT_EQ(2, audio_type); // Comfort noise.
break;
}
}
// When Opus is in DTX, it wakes up in a regular basis. It sends two packets,
// one with an arbitrary size and the other of 1-byte, then stops sending for
// a certain number of frames.
// |max_dtx_frames| is the maximum number of frames Opus can stay in DTX.
const int max_dtx_frames = 400 / block_length_ms + 1;
// We run |kRunTimeMs| milliseconds of pure silence.
const int kRunTimeMs = 4500;
// We check that, after a |kCheckTimeMs| milliseconds (given that the CNG in
// Opus needs time to adapt), the absolute values of DTX decoded signal are
// bounded by |kOutputValueBound|.
const int kCheckTimeMs = 4000;
#if defined(OPUS_FIXED_POINT)
// Fixed-point Opus generates a random (comfort) noise, which has a less
// predictable value bound than its floating-point Opus. This value depends on
// input signal, and the time window for checking the output values (between
// |kCheckTimeMs| and |kRunTimeMs|).
const uint16_t kOutputValueBound = 30;
#else
const uint16_t kOutputValueBound = 2;
#endif
int time = 0;
while (time < kRunTimeMs) {
// DTX mode is maintained for maximum |max_dtx_frames| frames.
int i = 0;
for (; i < max_dtx_frames; ++i) {
time += block_length_ms;
EXPECT_EQ(samples, static_cast<size_t>(
EncodeDecode(opus_encoder_, silence, opus_decoder_,
output_data_decode, &audio_type)));
if (dtx) {
if (encoded_bytes_ > 1)
break;
EXPECT_EQ(0U, encoded_bytes_) // Send 0 byte.
<< "Opus should have entered DTX mode.";
EXPECT_EQ(1, opus_encoder_->in_dtx_mode);
EXPECT_EQ(1, opus_decoder_->in_dtx_mode);
EXPECT_EQ(2, audio_type); // Comfort noise.
if (time >= kCheckTimeMs) {
CheckAudioBounded(output_data_decode, samples, channels_,
kOutputValueBound);
}
} else {
EXPECT_GT(encoded_bytes_, 1U);
EXPECT_EQ(0, opus_encoder_->in_dtx_mode);
EXPECT_EQ(0, opus_decoder_->in_dtx_mode);
EXPECT_EQ(0, audio_type); // Speech.
}
}
if (dtx) {
// With DTX, Opus must stop transmission for some time.
EXPECT_GT(i, 1);
}
// We expect a normal payload.
EXPECT_EQ(0, opus_encoder_->in_dtx_mode);
EXPECT_EQ(0, opus_decoder_->in_dtx_mode);
EXPECT_EQ(0, audio_type); // Speech.
// Enters DTX again immediately.
time += block_length_ms;
EXPECT_EQ(samples, static_cast<size_t>(
EncodeDecode(opus_encoder_, silence, opus_decoder_,
output_data_decode, &audio_type)));
if (dtx) {
EXPECT_EQ(1U, encoded_bytes_); // Send 1 byte.
EXPECT_EQ(1, opus_encoder_->in_dtx_mode);
EXPECT_EQ(1, opus_decoder_->in_dtx_mode);
EXPECT_EQ(2, audio_type); // Comfort noise.
if (time >= kCheckTimeMs) {
CheckAudioBounded(output_data_decode, samples, channels_,
kOutputValueBound);
}
} else {
EXPECT_GT(encoded_bytes_, 1U);
EXPECT_EQ(0, opus_encoder_->in_dtx_mode);
EXPECT_EQ(0, opus_decoder_->in_dtx_mode);
EXPECT_EQ(0, audio_type); // Speech.
}
}
silence[0] = 10000;
if (dtx) {
// Verify that encoder/decoder can jump out from DTX mode.
EXPECT_EQ(samples, static_cast<size_t>(
EncodeDecode(opus_encoder_, silence, opus_decoder_,
output_data_decode, &audio_type)));
EXPECT_GT(encoded_bytes_, 1U);
EXPECT_EQ(0, opus_encoder_->in_dtx_mode);
EXPECT_EQ(0, opus_decoder_->in_dtx_mode);
EXPECT_EQ(0, audio_type); // Speech.
}
// Free memory.
delete[] output_data_decode;
EXPECT_EQ(0, WebRtcOpus_EncoderFree(opus_encoder_));
EXPECT_EQ(0, WebRtcOpus_DecoderFree(opus_decoder_));
}
// Test if CBR does what we expect.
void OpusTest::TestCbrEffect(bool cbr, int block_length_ms) {
PrepareSpeechData(channels_, block_length_ms, 2000);
const size_t samples = kOpusRateKhz * block_length_ms;
int32_t max_pkt_size_diff = 0;
int32_t prev_pkt_size = 0;
// Create encoder memory.
CreateSingleOrMultiStreamEncoder(&opus_encoder_, channels_, application_,
force_multistream_);
CreateSingleOrMultiStreamDecoder(&opus_decoder_, channels_,
force_multistream_);
// Set bitrate.
EXPECT_EQ(
0, WebRtcOpus_SetBitRate(opus_encoder_, channels_ == 1 ? 32000 : 64000));
// Setting CBR.
EXPECT_EQ(0, cbr ? WebRtcOpus_EnableCbr(opus_encoder_)
: WebRtcOpus_DisableCbr(opus_encoder_));
int16_t audio_type;
std::vector<int16_t> audio_out(samples * channels_);
for (int i = 0; i < 100; ++i) {
EXPECT_EQ(samples, static_cast<size_t>(EncodeDecode(
opus_encoder_, speech_data_.GetNextBlock(),
opus_decoder_, audio_out.data(), &audio_type)));
if (prev_pkt_size > 0) {
int32_t diff = std::abs((int32_t)encoded_bytes_ - prev_pkt_size);
max_pkt_size_diff = std::max(max_pkt_size_diff, diff);
}
prev_pkt_size = rtc::checked_cast<int32_t>(encoded_bytes_);
}
if (cbr) {
EXPECT_EQ(max_pkt_size_diff, 0);
} else {
EXPECT_GT(max_pkt_size_diff, 0);
}
// Free memory.
EXPECT_EQ(0, WebRtcOpus_EncoderFree(opus_encoder_));
EXPECT_EQ(0, WebRtcOpus_DecoderFree(opus_decoder_));
}
// Test failing Create.
TEST(OpusTest, OpusCreateFail) {
WebRtcOpusEncInst* opus_encoder;
WebRtcOpusDecInst* opus_decoder;
// Test to see that an invalid pointer is caught.
EXPECT_EQ(-1, WebRtcOpus_EncoderCreate(NULL, 1, 0));
// Invalid channel number.
EXPECT_EQ(-1, WebRtcOpus_EncoderCreate(&opus_encoder, 257, 0));
// Invalid applciation mode.
EXPECT_EQ(-1, WebRtcOpus_EncoderCreate(&opus_encoder, 1, 2));
EXPECT_EQ(-1, WebRtcOpus_DecoderCreate(NULL, 1));
// Invalid channel number.
EXPECT_EQ(-1, WebRtcOpus_DecoderCreate(&opus_decoder, 257));
}
// Test failing Free.
TEST(OpusTest, OpusFreeFail) {
// Test to see that an invalid pointer is caught.
EXPECT_EQ(-1, WebRtcOpus_EncoderFree(NULL));
EXPECT_EQ(-1, WebRtcOpus_DecoderFree(NULL));
}
// Test normal Create and Free.
TEST_P(OpusTest, OpusCreateFree) {
CreateSingleOrMultiStreamEncoder(&opus_encoder_, channels_, application_,
force_multistream_);
CreateSingleOrMultiStreamDecoder(&opus_decoder_, channels_,
force_multistream_);
EXPECT_TRUE(opus_encoder_ != NULL);
EXPECT_TRUE(opus_decoder_ != NULL);
// Free encoder and decoder memory.
EXPECT_EQ(0, WebRtcOpus_EncoderFree(opus_encoder_));
EXPECT_EQ(0, WebRtcOpus_DecoderFree(opus_decoder_));
}
#define ENCODER_CTL(inst, vargs) \
inst->encoder \
? opus_encoder_ctl(inst->encoder, vargs) \
: opus_multistream_encoder_ctl(inst->multistream_encoder, vargs)
TEST_P(OpusTest, OpusEncodeDecode) {
PrepareSpeechData(channels_, 20, 20);
// Create encoder memory.
CreateSingleOrMultiStreamEncoder(&opus_encoder_, channels_, application_,
force_multistream_);
CreateSingleOrMultiStreamDecoder(&opus_decoder_, channels_,
force_multistream_);
// Set bitrate.
EXPECT_EQ(
0, WebRtcOpus_SetBitRate(opus_encoder_, channels_ == 1 ? 32000 : 64000));
// Check number of channels for decoder.
EXPECT_EQ(channels_, WebRtcOpus_DecoderChannels(opus_decoder_));
// Check application mode.
opus_int32 app;
ENCODER_CTL(opus_encoder_, OPUS_GET_APPLICATION(&app));
EXPECT_EQ(application_ == 0 ? OPUS_APPLICATION_VOIP : OPUS_APPLICATION_AUDIO,
app);
// Encode & decode.
int16_t audio_type;
int16_t* output_data_decode = new int16_t[kOpus20msFrameSamples * channels_];
EXPECT_EQ(kOpus20msFrameSamples,
static_cast<size_t>(
EncodeDecode(opus_encoder_, speech_data_.GetNextBlock(),
opus_decoder_, output_data_decode, &audio_type)));
// Free memory.
delete[] output_data_decode;
EXPECT_EQ(0, WebRtcOpus_EncoderFree(opus_encoder_));
EXPECT_EQ(0, WebRtcOpus_DecoderFree(opus_decoder_));
}
TEST_P(OpusTest, OpusSetBitRate) {
// Test without creating encoder memory.
EXPECT_EQ(-1, WebRtcOpus_SetBitRate(opus_encoder_, 60000));
// Create encoder memory, try with different bitrates.
CreateSingleOrMultiStreamEncoder(&opus_encoder_, channels_, application_,
force_multistream_);
EXPECT_EQ(0, WebRtcOpus_SetBitRate(opus_encoder_, 30000));
EXPECT_EQ(0, WebRtcOpus_SetBitRate(opus_encoder_, 60000));
EXPECT_EQ(0, WebRtcOpus_SetBitRate(opus_encoder_, 300000));
EXPECT_EQ(0, WebRtcOpus_SetBitRate(opus_encoder_, 600000));
// Free memory.
EXPECT_EQ(0, WebRtcOpus_EncoderFree(opus_encoder_));
}
TEST_P(OpusTest, OpusSetComplexity) {
// Test without creating encoder memory.
EXPECT_EQ(-1, WebRtcOpus_SetComplexity(opus_encoder_, 9));
// Create encoder memory, try with different complexities.
CreateSingleOrMultiStreamEncoder(&opus_encoder_, channels_, application_,
force_multistream_);
EXPECT_EQ(0, WebRtcOpus_SetComplexity(opus_encoder_, 0));
EXPECT_EQ(0, WebRtcOpus_SetComplexity(opus_encoder_, 10));
EXPECT_EQ(-1, WebRtcOpus_SetComplexity(opus_encoder_, 11));
// Free memory.
EXPECT_EQ(0, WebRtcOpus_EncoderFree(opus_encoder_));
}
TEST_P(OpusTest, OpusSetBandwidth) {
if (channels_ > 2) {
// TODO(webrtc:10217): investigate why multi-stream Opus reports
// narrowband when it's configured with FULLBAND.
return;
}
PrepareSpeechData(channels_, 20, 20);
int16_t audio_type;
std::unique_ptr<int16_t[]> output_data_decode(
new int16_t[kOpus20msFrameSamples * channels_]());
// Test without creating encoder memory.
EXPECT_EQ(-1,
WebRtcOpus_SetBandwidth(opus_encoder_, OPUS_BANDWIDTH_NARROWBAND));
EXPECT_EQ(-1, WebRtcOpus_GetBandwidth(opus_encoder_));
// Create encoder memory, try with different bandwidths.
CreateSingleOrMultiStreamEncoder(&opus_encoder_, channels_, application_,
force_multistream_);
CreateSingleOrMultiStreamDecoder(&opus_decoder_, channels_,
force_multistream_);
EXPECT_EQ(-1, WebRtcOpus_SetBandwidth(opus_encoder_,
OPUS_BANDWIDTH_NARROWBAND - 1));
EXPECT_EQ(0,
WebRtcOpus_SetBandwidth(opus_encoder_, OPUS_BANDWIDTH_NARROWBAND));
EncodeDecode(opus_encoder_, speech_data_.GetNextBlock(), opus_decoder_,
output_data_decode.get(), &audio_type);
EXPECT_EQ(OPUS_BANDWIDTH_NARROWBAND, WebRtcOpus_GetBandwidth(opus_encoder_));
EXPECT_EQ(0, WebRtcOpus_SetBandwidth(opus_encoder_, OPUS_BANDWIDTH_FULLBAND));
EncodeDecode(opus_encoder_, speech_data_.GetNextBlock(), opus_decoder_,
output_data_decode.get(), &audio_type);
EXPECT_EQ(OPUS_BANDWIDTH_FULLBAND, WebRtcOpus_GetBandwidth(opus_encoder_));
EXPECT_EQ(
-1, WebRtcOpus_SetBandwidth(opus_encoder_, OPUS_BANDWIDTH_FULLBAND + 1));
EncodeDecode(opus_encoder_, speech_data_.GetNextBlock(), opus_decoder_,
output_data_decode.get(), &audio_type);
EXPECT_EQ(OPUS_BANDWIDTH_FULLBAND, WebRtcOpus_GetBandwidth(opus_encoder_));
// Free memory.
EXPECT_EQ(0, WebRtcOpus_EncoderFree(opus_encoder_));
EXPECT_EQ(0, WebRtcOpus_DecoderFree(opus_decoder_));
}
TEST_P(OpusTest, OpusForceChannels) {
// Test without creating encoder memory.
EXPECT_EQ(-1, WebRtcOpus_SetForceChannels(opus_encoder_, 1));
CreateSingleOrMultiStreamEncoder(&opus_encoder_, channels_, application_,
force_multistream_);
ASSERT_NE(nullptr, opus_encoder_);
if (channels_ >= 2) {
EXPECT_EQ(-1, WebRtcOpus_SetForceChannels(opus_encoder_, 3));
EXPECT_EQ(0, WebRtcOpus_SetForceChannels(opus_encoder_, 2));
EXPECT_EQ(0, WebRtcOpus_SetForceChannels(opus_encoder_, 1));
EXPECT_EQ(0, WebRtcOpus_SetForceChannels(opus_encoder_, 0));
} else {
EXPECT_EQ(-1, WebRtcOpus_SetForceChannels(opus_encoder_, 2));
EXPECT_EQ(0, WebRtcOpus_SetForceChannels(opus_encoder_, 1));
EXPECT_EQ(0, WebRtcOpus_SetForceChannels(opus_encoder_, 0));
}
EXPECT_EQ(0, WebRtcOpus_EncoderFree(opus_encoder_));
}
// Encode and decode one frame, initialize the decoder and
// decode once more.
TEST_P(OpusTest, OpusDecodeInit) {
PrepareSpeechData(channels_, 20, 20);
// Create encoder memory.
CreateSingleOrMultiStreamEncoder(&opus_encoder_, channels_, application_,
force_multistream_);
CreateSingleOrMultiStreamDecoder(&opus_decoder_, channels_,
force_multistream_);
// Encode & decode.
int16_t audio_type;
int16_t* output_data_decode = new int16_t[kOpus20msFrameSamples * channels_];
EXPECT_EQ(kOpus20msFrameSamples,
static_cast<size_t>(
EncodeDecode(opus_encoder_, speech_data_.GetNextBlock(),
opus_decoder_, output_data_decode, &audio_type)));
WebRtcOpus_DecoderInit(opus_decoder_);
EXPECT_EQ(kOpus20msFrameSamples,
static_cast<size_t>(
WebRtcOpus_Decode(opus_decoder_, bitstream_, encoded_bytes_,
output_data_decode, &audio_type)));
// Free memory.
delete[] output_data_decode;
EXPECT_EQ(0, WebRtcOpus_EncoderFree(opus_encoder_));
EXPECT_EQ(0, WebRtcOpus_DecoderFree(opus_decoder_));
}
TEST_P(OpusTest, OpusEnableDisableFec) {
// Test without creating encoder memory.
EXPECT_EQ(-1, WebRtcOpus_EnableFec(opus_encoder_));
EXPECT_EQ(-1, WebRtcOpus_DisableFec(opus_encoder_));
// Create encoder memory.
CreateSingleOrMultiStreamEncoder(&opus_encoder_, channels_, application_,
force_multistream_);
EXPECT_EQ(0, WebRtcOpus_EnableFec(opus_encoder_));
EXPECT_EQ(0, WebRtcOpus_DisableFec(opus_encoder_));
// Free memory.
EXPECT_EQ(0, WebRtcOpus_EncoderFree(opus_encoder_));
}
TEST_P(OpusTest, OpusEnableDisableDtx) {
// Test without creating encoder memory.
EXPECT_EQ(-1, WebRtcOpus_EnableDtx(opus_encoder_));
EXPECT_EQ(-1, WebRtcOpus_DisableDtx(opus_encoder_));
// Create encoder memory.
CreateSingleOrMultiStreamEncoder(&opus_encoder_, channels_, application_,
force_multistream_);
opus_int32 dtx;
// DTX is off by default.
ENCODER_CTL(opus_encoder_, OPUS_GET_DTX(&dtx));
EXPECT_EQ(0, dtx);
// Test to enable DTX.
EXPECT_EQ(0, WebRtcOpus_EnableDtx(opus_encoder_));
ENCODER_CTL(opus_encoder_, OPUS_GET_DTX(&dtx));
EXPECT_EQ(1, dtx);
// Test to disable DTX.
EXPECT_EQ(0, WebRtcOpus_DisableDtx(opus_encoder_));
ENCODER_CTL(opus_encoder_, OPUS_GET_DTX(&dtx));
EXPECT_EQ(0, dtx);
// Free memory.
EXPECT_EQ(0, WebRtcOpus_EncoderFree(opus_encoder_));
}
TEST_P(OpusTest, OpusDtxOff) {
TestDtxEffect(false, 10);
TestDtxEffect(false, 20);
TestDtxEffect(false, 40);
}
TEST_P(OpusTest, OpusDtxOn) {
if (channels_ > 2) {
// TODO(webrtc:10218): adapt the test to the sizes and order of multi-stream
// DTX packets.
return;
}
TestDtxEffect(true, 10);
TestDtxEffect(true, 20);
TestDtxEffect(true, 40);
}
TEST_P(OpusTest, OpusCbrOff) {
TestCbrEffect(false, 10);
TestCbrEffect(false, 20);
TestCbrEffect(false, 40);
}
TEST_P(OpusTest, OpusCbrOn) {
TestCbrEffect(true, 10);
TestCbrEffect(true, 20);
TestCbrEffect(true, 40);
}
TEST_P(OpusTest, OpusSetPacketLossRate) {
// Test without creating encoder memory.
EXPECT_EQ(-1, WebRtcOpus_SetPacketLossRate(opus_encoder_, 50));
// Create encoder memory.
CreateSingleOrMultiStreamEncoder(&opus_encoder_, channels_, application_,
force_multistream_);
EXPECT_EQ(0, WebRtcOpus_SetPacketLossRate(opus_encoder_, 50));
EXPECT_EQ(-1, WebRtcOpus_SetPacketLossRate(opus_encoder_, -1));
EXPECT_EQ(-1, WebRtcOpus_SetPacketLossRate(opus_encoder_, 101));
// Free memory.
EXPECT_EQ(0, WebRtcOpus_EncoderFree(opus_encoder_));
}
TEST_P(OpusTest, OpusSetMaxPlaybackRate) {
// Test without creating encoder memory.
EXPECT_EQ(-1, WebRtcOpus_SetMaxPlaybackRate(opus_encoder_, 20000));
// Create encoder memory.
CreateSingleOrMultiStreamEncoder(&opus_encoder_, channels_, application_,
force_multistream_);
SetMaxPlaybackRate(opus_encoder_, OPUS_BANDWIDTH_FULLBAND, 48000);
SetMaxPlaybackRate(opus_encoder_, OPUS_BANDWIDTH_FULLBAND, 24001);
SetMaxPlaybackRate(opus_encoder_, OPUS_BANDWIDTH_SUPERWIDEBAND, 24000);
SetMaxPlaybackRate(opus_encoder_, OPUS_BANDWIDTH_SUPERWIDEBAND, 16001);
SetMaxPlaybackRate(opus_encoder_, OPUS_BANDWIDTH_WIDEBAND, 16000);
SetMaxPlaybackRate(opus_encoder_, OPUS_BANDWIDTH_WIDEBAND, 12001);
SetMaxPlaybackRate(opus_encoder_, OPUS_BANDWIDTH_MEDIUMBAND, 12000);
SetMaxPlaybackRate(opus_encoder_, OPUS_BANDWIDTH_MEDIUMBAND, 8001);
SetMaxPlaybackRate(opus_encoder_, OPUS_BANDWIDTH_NARROWBAND, 8000);
SetMaxPlaybackRate(opus_encoder_, OPUS_BANDWIDTH_NARROWBAND, 4000);
// Free memory.
EXPECT_EQ(0, WebRtcOpus_EncoderFree(opus_encoder_));
}
// Test PLC.
TEST_P(OpusTest, OpusDecodePlc) {
PrepareSpeechData(channels_, 20, 20);
// Create encoder memory.
CreateSingleOrMultiStreamEncoder(&opus_encoder_, channels_, application_,
force_multistream_);
CreateSingleOrMultiStreamDecoder(&opus_decoder_, channels_,
force_multistream_);
// Set bitrate.
EXPECT_EQ(
0, WebRtcOpus_SetBitRate(opus_encoder_, channels_ == 1 ? 32000 : 64000));
// Check number of channels for decoder.
EXPECT_EQ(channels_, WebRtcOpus_DecoderChannels(opus_decoder_));
// Encode & decode.
int16_t audio_type;
int16_t* output_data_decode = new int16_t[kOpus20msFrameSamples * channels_];
EXPECT_EQ(kOpus20msFrameSamples,
static_cast<size_t>(
EncodeDecode(opus_encoder_, speech_data_.GetNextBlock(),
opus_decoder_, output_data_decode, &audio_type)));
// Call decoder PLC.
int16_t* plc_buffer = new int16_t[kOpus20msFrameSamples * channels_];
EXPECT_EQ(kOpus20msFrameSamples, static_cast<size_t>(WebRtcOpus_DecodePlc(
opus_decoder_, plc_buffer, 1)));
// Free memory.
delete[] plc_buffer;
delete[] output_data_decode;
EXPECT_EQ(0, WebRtcOpus_EncoderFree(opus_encoder_));
EXPECT_EQ(0, WebRtcOpus_DecoderFree(opus_decoder_));
}
// Duration estimation.
TEST_P(OpusTest, OpusDurationEstimation) {
PrepareSpeechData(channels_, 20, 20);
// Create.
CreateSingleOrMultiStreamEncoder(&opus_encoder_, channels_, application_,
force_multistream_);
CreateSingleOrMultiStreamDecoder(&opus_decoder_, channels_,
force_multistream_);
// 10 ms. We use only first 10 ms of a 20 ms block.
auto speech_block = speech_data_.GetNextBlock();
int encoded_bytes_int = WebRtcOpus_Encode(
opus_encoder_, speech_block.data(),
rtc::CheckedDivExact(speech_block.size(), 2 * channels_), kMaxBytes,
bitstream_);
EXPECT_GE(encoded_bytes_int, 0);
EXPECT_EQ(
kOpus10msFrameSamples,
static_cast<size_t>(WebRtcOpus_DurationEst(
opus_decoder_, bitstream_, static_cast<size_t>(encoded_bytes_int))));
// 20 ms
speech_block = speech_data_.GetNextBlock();
encoded_bytes_int =
WebRtcOpus_Encode(opus_encoder_, speech_block.data(),
rtc::CheckedDivExact(speech_block.size(), channels_),
kMaxBytes, bitstream_);
EXPECT_GE(encoded_bytes_int, 0);
EXPECT_EQ(
kOpus20msFrameSamples,
static_cast<size_t>(WebRtcOpus_DurationEst(
opus_decoder_, bitstream_, static_cast<size_t>(encoded_bytes_int))));
// Free memory.
EXPECT_EQ(0, WebRtcOpus_EncoderFree(opus_encoder_));
EXPECT_EQ(0, WebRtcOpus_DecoderFree(opus_decoder_));
}
TEST_P(OpusTest, OpusDecodeRepacketized) {
if (channels_ > 2) {
// As per the Opus documentation
// https://mf4.xiph.org/jenkins/view/opus/job/opus/ws/doc/html/group__opus__repacketizer.html#details,
// multiple streams are not supported.
return;
}
constexpr size_t kPackets = 6;
PrepareSpeechData(channels_, 20, 20 * kPackets);
// Create encoder memory.
CreateSingleOrMultiStreamEncoder(&opus_encoder_, channels_, application_,
force_multistream_);
ASSERT_NE(nullptr, opus_encoder_);
CreateSingleOrMultiStreamDecoder(&opus_decoder_, channels_,
force_multistream_);
ASSERT_NE(nullptr, opus_decoder_);
// Set bitrate.
EXPECT_EQ(
0, WebRtcOpus_SetBitRate(opus_encoder_, channels_ == 1 ? 32000 : 64000));
// Check number of channels for decoder.
EXPECT_EQ(channels_, WebRtcOpus_DecoderChannels(opus_decoder_));
// Encode & decode.
int16_t audio_type;
std::unique_ptr<int16_t[]> output_data_decode(
new int16_t[kPackets * kOpus20msFrameSamples * channels_]);
OpusRepacketizer* rp = opus_repacketizer_create();
size_t num_packets = 0;
constexpr size_t kMaxCycles = 100;
for (size_t idx = 0; idx < kMaxCycles; ++idx) {
auto speech_block = speech_data_.GetNextBlock();
encoded_bytes_ =
WebRtcOpus_Encode(opus_encoder_, speech_block.data(),
rtc::CheckedDivExact(speech_block.size(), channels_),
kMaxBytes, bitstream_);
if (opus_repacketizer_cat(rp, bitstream_,
rtc::checked_cast<opus_int32>(encoded_bytes_)) ==
OPUS_OK) {
++num_packets;
if (num_packets == kPackets) {
break;
}
} else {
// Opus repacketizer cannot guarantee a success. We try again if it fails.
opus_repacketizer_init(rp);
num_packets = 0;
}
}
EXPECT_EQ(kPackets, num_packets);
encoded_bytes_ = opus_repacketizer_out(rp, bitstream_, kMaxBytes);
EXPECT_EQ(kOpus20msFrameSamples * kPackets,
static_cast<size_t>(WebRtcOpus_DurationEst(
opus_decoder_, bitstream_, encoded_bytes_)));
EXPECT_EQ(kOpus20msFrameSamples * kPackets,
static_cast<size_t>(
WebRtcOpus_Decode(opus_decoder_, bitstream_, encoded_bytes_,
output_data_decode.get(), &audio_type)));
// Free memory.
opus_repacketizer_destroy(rp);
EXPECT_EQ(0, WebRtcOpus_EncoderFree(opus_encoder_));
EXPECT_EQ(0, WebRtcOpus_DecoderFree(opus_decoder_));
}
INSTANTIATE_TEST_SUITE_P(VariousMode,
OpusTest,
::testing::ValuesIn({
std::make_tuple(1, 0, true),
std::make_tuple(2, 1, true),
std::make_tuple(2, 0, false),
std::make_tuple(4, 0, false),
std::make_tuple(1, 1, false),
std::make_tuple(4, 1, false),
}));
} // namespace webrtc