webrtc/modules/rtp_rtcp/source/flexfec_header_reader_writer.cc
Ilya Nikolaevskiy a5d952f4be Reland "Refactor FEC code to use COW buffers"
Reland with fixes for fuzzer found crashes.

This refactoring helps to reduce unnecessary memcpy calls on the receive side.

This CL replaces |uint8 data[IP_PACKET_SIZE]| with |rtc::CopyOnWriteBuffer data| in Packet class, removes |length| field there, and does necessary changes.

Original Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/145332

Bug: webrtc:10750
Change-Id: I6775a701bcb2ae25ec1666e1db90041cd49013b7
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/151131
Reviewed-by: Rasmus Brandt <brandtr@webrtc.org>
Reviewed-by: Stefan Holmer <stefan@webrtc.org>
Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org>
Commit-Queue: Ilya Nikolaevskiy <ilnik@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#29116}
2019-09-09 16:20:33 +00:00

315 lines
13 KiB
C++

/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/rtp_rtcp/source/flexfec_header_reader_writer.h"
#include <string.h>
#include "api/scoped_refptr.h"
#include "modules/rtp_rtcp/source/byte_io.h"
#include "modules/rtp_rtcp/source/forward_error_correction_internal.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
namespace webrtc {
namespace {
// Maximum number of media packets that can be protected in one batch.
constexpr size_t kMaxMediaPackets = 48; // Since we are reusing ULPFEC masks.
// Maximum number of FEC packets stored inside ForwardErrorCorrection.
constexpr size_t kMaxFecPackets = kMaxMediaPackets;
// Size (in bytes) of packet masks, given number of K bits set.
constexpr size_t kFlexfecPacketMaskSizes[] = {2, 6, 14};
// Size (in bytes) of part of header which is not packet mask specific.
constexpr size_t kBaseHeaderSize = 12;
// Size (in bytes) of part of header which is stream specific.
constexpr size_t kStreamSpecificHeaderSize = 6;
// Size (in bytes) of header, given the single stream packet mask size, i.e.
// the number of K-bits set.
constexpr size_t kHeaderSizes[] = {
kBaseHeaderSize + kStreamSpecificHeaderSize + kFlexfecPacketMaskSizes[0],
kBaseHeaderSize + kStreamSpecificHeaderSize + kFlexfecPacketMaskSizes[1],
kBaseHeaderSize + kStreamSpecificHeaderSize + kFlexfecPacketMaskSizes[2]};
// We currently only support single-stream protection.
// TODO(brandtr): Update this when we support multistream protection.
constexpr uint8_t kSsrcCount = 1;
// There are three reserved bytes that MUST be set to zero in the header.
constexpr uint32_t kReservedBits = 0;
// TODO(brandtr): Update this when we support multistream protection.
constexpr size_t kPacketMaskOffset =
kBaseHeaderSize + kStreamSpecificHeaderSize;
// Here we count the K-bits as belonging to the packet mask.
// This can be used in conjunction with FlexfecHeaderWriter::MinPacketMaskSize,
// which calculates a bound on the needed packet mask size including K-bits,
// given a packet mask without K-bits.
size_t FlexfecHeaderSize(size_t packet_mask_size) {
RTC_DCHECK_LE(packet_mask_size, kFlexfecPacketMaskSizes[2]);
if (packet_mask_size <= kFlexfecPacketMaskSizes[0]) {
return kHeaderSizes[0];
} else if (packet_mask_size <= kFlexfecPacketMaskSizes[1]) {
return kHeaderSizes[1];
}
return kHeaderSizes[2];
}
} // namespace
FlexfecHeaderReader::FlexfecHeaderReader()
: FecHeaderReader(kMaxMediaPackets, kMaxFecPackets) {}
FlexfecHeaderReader::~FlexfecHeaderReader() = default;
// TODO(brandtr): Update this function when we support flexible masks,
// retransmissions, and/or several protected SSRCs.
bool FlexfecHeaderReader::ReadFecHeader(
ForwardErrorCorrection::ReceivedFecPacket* fec_packet) const {
if (fec_packet->pkt->data.size() <=
kBaseHeaderSize + kStreamSpecificHeaderSize) {
RTC_LOG(LS_WARNING) << "Discarding truncated FlexFEC packet.";
return false;
}
uint8_t* const data = fec_packet->pkt->data.data();
bool r_bit = (data[0] & 0x80) != 0;
if (r_bit) {
RTC_LOG(LS_INFO)
<< "FlexFEC packet with retransmission bit set. We do not yet "
"support this, thus discarding the packet.";
return false;
}
bool f_bit = (data[0] & 0x40) != 0;
if (f_bit) {
RTC_LOG(LS_INFO)
<< "FlexFEC packet with inflexible generator matrix. We do "
"not yet support this, thus discarding packet.";
return false;
}
uint8_t ssrc_count = ByteReader<uint8_t>::ReadBigEndian(&data[8]);
if (ssrc_count != 1) {
RTC_LOG(LS_INFO)
<< "FlexFEC packet protecting multiple media SSRCs. We do not "
"yet support this, thus discarding packet.";
return false;
}
uint32_t protected_ssrc = ByteReader<uint32_t>::ReadBigEndian(&data[12]);
uint16_t seq_num_base = ByteReader<uint16_t>::ReadBigEndian(&data[16]);
// Parse the FlexFEC packet mask and remove the interleaved K-bits.
// (See FEC header schematic in flexfec_header_reader_writer.h.)
// We store the packed packet mask in-band, which "destroys" the standards
// compliance of the header. That is fine though, since the code that
// reads from the header (from this point and onwards) is aware of this.
// TODO(brandtr): When the FEC packet classes have been refactored, store
// the packed packet masks out-of-band, thus leaving the FlexFEC header as is.
//
// We treat the mask parts as unsigned integers with host order endianness
// in order to simplify the bit shifting between bytes.
if (fec_packet->pkt->data.size() < kHeaderSizes[0]) {
RTC_LOG(LS_WARNING) << "Discarding truncated FlexFEC packet.";
return false;
}
uint8_t* const packet_mask = data + kPacketMaskOffset;
bool k_bit0 = (packet_mask[0] & 0x80) != 0;
uint16_t mask_part0 = ByteReader<uint16_t>::ReadBigEndian(&packet_mask[0]);
// Shift away K-bit 0, implicitly clearing the last bit.
mask_part0 <<= 1;
ByteWriter<uint16_t>::WriteBigEndian(&packet_mask[0], mask_part0);
size_t packet_mask_size;
if (k_bit0) {
// The first K-bit is set, and the packet mask is thus only 2 bytes long.
// We have now read the entire FEC header, and the rest of the packet
// is payload.
packet_mask_size = kFlexfecPacketMaskSizes[0];
} else {
if (fec_packet->pkt->data.size() < kHeaderSizes[1]) {
return false;
}
bool k_bit1 = (packet_mask[2] & 0x80) != 0;
// We have already shifted the first two bytes of the packet mask one step
// to the left, thus removing K-bit 0. We will now shift the next four bytes
// of the packet mask two steps to the left. (One step for the removed
// K-bit 0, and one step for the to be removed K-bit 1).
uint8_t bit15 = (packet_mask[2] >> 6) & 0x01;
packet_mask[1] |= bit15;
uint32_t mask_part1 = ByteReader<uint32_t>::ReadBigEndian(&packet_mask[2]);
// Shift away K-bit 1 and bit 15, implicitly clearing the last two bits.
mask_part1 <<= 2;
ByteWriter<uint32_t>::WriteBigEndian(&packet_mask[2], mask_part1);
if (k_bit1) {
// The first K-bit is clear, but the second K-bit is set. The packet
// mask is thus 6 bytes long. We have now read the entire FEC header,
// and the rest of the packet is payload.
packet_mask_size = kFlexfecPacketMaskSizes[1];
} else {
if (fec_packet->pkt->data.size() < kHeaderSizes[2]) {
RTC_LOG(LS_WARNING) << "Discarding truncated FlexFEC packet.";
return false;
}
bool k_bit2 = (packet_mask[6] & 0x80) != 0;
if (k_bit2) {
// The first and second K-bits are clear, but the third K-bit is set.
// The packet mask is thus 14 bytes long. We have now read the entire
// FEC header, and the rest of the packet is payload.
packet_mask_size = kFlexfecPacketMaskSizes[2];
} else {
RTC_LOG(LS_WARNING)
<< "Discarding FlexFEC packet with malformed header.";
return false;
}
// At this point, K-bits 0 and 1 have been removed, and the front-most
// part of the FlexFEC packet mask has been packed accordingly. We will
// now shift the remaning part of the packet mask three steps to the left.
// This corresponds to the (in total) three K-bits, which have been
// removed.
uint8_t tail_bits = (packet_mask[6] >> 5) & 0x03;
packet_mask[5] |= tail_bits;
uint64_t mask_part2 =
ByteReader<uint64_t>::ReadBigEndian(&packet_mask[6]);
// Shift away K-bit 2, bit 46, and bit 47, implicitly clearing the last
// three bits.
mask_part2 <<= 3;
ByteWriter<uint64_t>::WriteBigEndian(&packet_mask[6], mask_part2);
}
}
// Store "ULPFECized" packet mask info.
fec_packet->fec_header_size = FlexfecHeaderSize(packet_mask_size);
fec_packet->protected_ssrc = protected_ssrc;
fec_packet->seq_num_base = seq_num_base;
fec_packet->packet_mask_offset = kPacketMaskOffset;
fec_packet->packet_mask_size = packet_mask_size;
// In FlexFEC, all media packets are protected in their entirety.
fec_packet->protection_length =
fec_packet->pkt->data.size() - fec_packet->fec_header_size;
return true;
}
FlexfecHeaderWriter::FlexfecHeaderWriter()
: FecHeaderWriter(kMaxMediaPackets, kMaxFecPackets, kHeaderSizes[2]) {}
FlexfecHeaderWriter::~FlexfecHeaderWriter() = default;
size_t FlexfecHeaderWriter::MinPacketMaskSize(const uint8_t* packet_mask,
size_t packet_mask_size) const {
if (packet_mask_size == kUlpfecPacketMaskSizeLBitClear &&
(packet_mask[1] & 0x01) == 0) {
// Packet mask is 16 bits long, with bit 15 clear.
// It can be used as is.
return kFlexfecPacketMaskSizes[0];
} else if (packet_mask_size == kUlpfecPacketMaskSizeLBitClear) {
// Packet mask is 16 bits long, with bit 15 set.
// We must expand the packet mask with zeros in the FlexFEC header.
return kFlexfecPacketMaskSizes[1];
} else if (packet_mask_size == kUlpfecPacketMaskSizeLBitSet &&
(packet_mask[5] & 0x03) == 0) {
// Packet mask is 48 bits long, with bits 46 and 47 clear.
// It can be used as is.
return kFlexfecPacketMaskSizes[1];
} else if (packet_mask_size == kUlpfecPacketMaskSizeLBitSet) {
// Packet mask is 48 bits long, with at least one of bits 46 and 47 set.
// We must expand it with zeros.
return kFlexfecPacketMaskSizes[2];
}
RTC_NOTREACHED() << "Incorrect packet mask size: " << packet_mask_size << ".";
return kFlexfecPacketMaskSizes[2];
}
size_t FlexfecHeaderWriter::FecHeaderSize(size_t packet_mask_size) const {
return FlexfecHeaderSize(packet_mask_size);
}
// This function adapts the precomputed ULPFEC packet masks to the
// FlexFEC header standard. Note that the header size is computed by
// FecHeaderSize(), so in this function we can be sure that we are
// writing in space that is intended for the header.
//
// TODO(brandtr): Update this function when we support offset-based masks,
// retransmissions, and protecting multiple SSRCs.
void FlexfecHeaderWriter::FinalizeFecHeader(
uint32_t media_ssrc,
uint16_t seq_num_base,
const uint8_t* packet_mask,
size_t packet_mask_size,
ForwardErrorCorrection::Packet* fec_packet) const {
uint8_t* data = fec_packet->data.data();
data[0] &= 0x7f; // Clear R bit.
data[0] &= 0xbf; // Clear F bit.
ByteWriter<uint8_t>::WriteBigEndian(&data[8], kSsrcCount);
ByteWriter<uint32_t, 3>::WriteBigEndian(&data[9], kReservedBits);
ByteWriter<uint32_t>::WriteBigEndian(&data[12], media_ssrc);
ByteWriter<uint16_t>::WriteBigEndian(&data[16], seq_num_base);
// Adapt ULPFEC packet mask to FlexFEC header.
//
// We treat the mask parts as unsigned integers with host order endianness
// in order to simplify the bit shifting between bytes.
uint8_t* const written_packet_mask =
fec_packet->data.data() + kPacketMaskOffset;
if (packet_mask_size == kUlpfecPacketMaskSizeLBitSet) {
// The packet mask is 48 bits long.
uint16_t tmp_mask_part0 =
ByteReader<uint16_t>::ReadBigEndian(&packet_mask[0]);
uint32_t tmp_mask_part1 =
ByteReader<uint32_t>::ReadBigEndian(&packet_mask[2]);
tmp_mask_part0 >>= 1; // Shift, thus clearing K-bit 0.
ByteWriter<uint16_t>::WriteBigEndian(&written_packet_mask[0],
tmp_mask_part0);
tmp_mask_part1 >>= 2; // Shift, thus clearing K-bit 1 and bit 15.
ByteWriter<uint32_t>::WriteBigEndian(&written_packet_mask[2],
tmp_mask_part1);
bool bit15 = (packet_mask[1] & 0x01) != 0;
if (bit15)
written_packet_mask[2] |= 0x40; // Set bit 15.
bool bit46 = (packet_mask[5] & 0x02) != 0;
bool bit47 = (packet_mask[5] & 0x01) != 0;
if (!bit46 && !bit47) {
written_packet_mask[2] |= 0x80; // Set K-bit 1.
} else {
memset(&written_packet_mask[6], 0, 8); // Clear all trailing bits.
written_packet_mask[6] |= 0x80; // Set K-bit 2.
if (bit46)
written_packet_mask[6] |= 0x40; // Set bit 46.
if (bit47)
written_packet_mask[6] |= 0x20; // Set bit 47.
}
} else if (packet_mask_size == kUlpfecPacketMaskSizeLBitClear) {
// The packet mask is 16 bits long.
uint16_t tmp_mask_part0 =
ByteReader<uint16_t>::ReadBigEndian(&packet_mask[0]);
tmp_mask_part0 >>= 1; // Shift, thus clearing K-bit 0.
ByteWriter<uint16_t>::WriteBigEndian(&written_packet_mask[0],
tmp_mask_part0);
bool bit15 = (packet_mask[1] & 0x01) != 0;
if (!bit15) {
written_packet_mask[0] |= 0x80; // Set K-bit 0.
} else {
memset(&written_packet_mask[2], 0U, 4); // Clear all trailing bits.
written_packet_mask[2] |= 0x80; // Set K-bit 1.
written_packet_mask[2] |= 0x40; // Set bit 15.
}
} else {
RTC_NOTREACHED() << "Incorrect packet mask size: " << packet_mask_size
<< ".";
}
}
} // namespace webrtc