webrtc/modules/video_coding/codecs/vp8/libvpx_vp8_encoder.cc
Palak Agarwal a09f21b207 Introduce capture_time_identifier in webrtc::EncodedImage
This CL propagates capture_time_identifier introduced in
webrtc::VideoFrame and propagates it to EncodedImage. For use cases
involving EncodedTransforms, this identifier is further propagated to
TransformableVideoSenderFrame.

VideoEncoder::Encode function is overriden by each encoder. Each of
these overriden functions needs to be changed so that they can handle
this new identifier and propagate its value in the created EncodedImage.

Change-Id: I5bea4c5a3fe714f1198e497a4bcb5fd059afe516
Bug: webrtc:14878
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/291800
Reviewed-by: Tony Herre <herre@google.com>
Reviewed-by: Harald Alvestrand <hta@webrtc.org>
Commit-Queue: Palak Agarwal <agpalak@google.com>
Cr-Commit-Position: refs/heads/main@{#39374}
2023-02-22 17:08:53 +00:00

1446 lines
55 KiB
C++

/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/codecs/vp8/libvpx_vp8_encoder.h"
#include <string.h>
#include <algorithm>
#include <cstdint>
#include <iterator>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "absl/algorithm/container.h"
#include "api/scoped_refptr.h"
#include "api/video/video_content_type.h"
#include "api/video/video_frame_buffer.h"
#include "api/video/video_timing.h"
#include "api/video_codecs/scalability_mode.h"
#include "api/video_codecs/vp8_temporal_layers.h"
#include "api/video_codecs/vp8_temporal_layers_factory.h"
#include "modules/video_coding/codecs/interface/common_constants.h"
#include "modules/video_coding/codecs/vp8/include/vp8.h"
#include "modules/video_coding/codecs/vp8/vp8_scalability.h"
#include "modules/video_coding/include/video_error_codes.h"
#include "modules/video_coding/svc/scalability_mode_util.h"
#include "modules/video_coding/utility/simulcast_rate_allocator.h"
#include "modules/video_coding/utility/simulcast_utility.h"
#include "rtc_base/checks.h"
#include "rtc_base/experiments/field_trial_parser.h"
#include "rtc_base/experiments/field_trial_units.h"
#include "rtc_base/logging.h"
#include "rtc_base/trace_event.h"
#include "system_wrappers/include/field_trial.h"
#include "third_party/libyuv/include/libyuv/scale.h"
#include "vpx/vp8cx.h"
namespace webrtc {
namespace {
#if defined(WEBRTC_IOS)
constexpr char kVP8IosMaxNumberOfThreadFieldTrial[] =
"WebRTC-VP8IosMaxNumberOfThread";
constexpr char kVP8IosMaxNumberOfThreadFieldTrialParameter[] = "max_thread";
#endif
constexpr char kVp8ForcePartitionResilience[] =
"WebRTC-VP8-ForcePartitionResilience";
// QP is obtained from VP8-bitstream for HW, so the QP corresponds to the
// bitstream range of [0, 127] and not the user-level range of [0,63].
constexpr int kLowVp8QpThreshold = 29;
constexpr int kHighVp8QpThreshold = 95;
constexpr int kTokenPartitions = VP8_ONE_TOKENPARTITION;
constexpr uint32_t kVp832ByteAlign = 32u;
constexpr int kRtpTicksPerSecond = 90000;
constexpr int kRtpTicksPerMs = kRtpTicksPerSecond / 1000;
// VP8 denoiser states.
enum denoiserState : uint32_t {
kDenoiserOff,
kDenoiserOnYOnly,
kDenoiserOnYUV,
kDenoiserOnYUVAggressive,
// Adaptive mode defaults to kDenoiserOnYUV on key frame, but may switch
// to kDenoiserOnYUVAggressive based on a computed noise metric.
kDenoiserOnAdaptive
};
// Greatest common divisior
int GCD(int a, int b) {
int c = a % b;
while (c != 0) {
a = b;
b = c;
c = a % b;
}
return b;
}
static_assert(Vp8EncoderConfig::TemporalLayerConfig::kMaxPeriodicity ==
VPX_TS_MAX_PERIODICITY,
"Vp8EncoderConfig::kMaxPeriodicity must be kept in sync with the "
"constant in libvpx.");
static_assert(Vp8EncoderConfig::TemporalLayerConfig::kMaxLayers ==
VPX_TS_MAX_LAYERS,
"Vp8EncoderConfig::kMaxLayers must be kept in sync with the "
"constant in libvpx.");
// Allow a newer value to override a current value only if the new value
// is set.
template <typename T>
bool MaybeSetNewValue(const absl::optional<T>& new_value,
absl::optional<T>* base_value) {
if (new_value.has_value() && new_value != *base_value) {
*base_value = new_value;
return true;
} else {
return false;
}
}
// Adds configuration from `new_config` to `base_config`. Both configs consist
// of optionals, and only optionals which are set in `new_config` can have
// an effect. (That is, set values in `base_config` cannot be unset.)
// Returns `true` iff any changes were made to `base_config`.
bool MaybeExtendVp8EncoderConfig(const Vp8EncoderConfig& new_config,
Vp8EncoderConfig* base_config) {
bool changes_made = false;
changes_made |= MaybeSetNewValue(new_config.temporal_layer_config,
&base_config->temporal_layer_config);
changes_made |= MaybeSetNewValue(new_config.rc_target_bitrate,
&base_config->rc_target_bitrate);
changes_made |= MaybeSetNewValue(new_config.rc_max_quantizer,
&base_config->rc_max_quantizer);
changes_made |= MaybeSetNewValue(new_config.g_error_resilient,
&base_config->g_error_resilient);
return changes_made;
}
void ApplyVp8EncoderConfigToVpxConfig(const Vp8EncoderConfig& encoder_config,
vpx_codec_enc_cfg_t* vpx_config) {
if (encoder_config.temporal_layer_config.has_value()) {
const Vp8EncoderConfig::TemporalLayerConfig& ts_config =
encoder_config.temporal_layer_config.value();
vpx_config->ts_number_layers = ts_config.ts_number_layers;
std::copy(ts_config.ts_target_bitrate.begin(),
ts_config.ts_target_bitrate.end(),
std::begin(vpx_config->ts_target_bitrate));
std::copy(ts_config.ts_rate_decimator.begin(),
ts_config.ts_rate_decimator.end(),
std::begin(vpx_config->ts_rate_decimator));
vpx_config->ts_periodicity = ts_config.ts_periodicity;
std::copy(ts_config.ts_layer_id.begin(), ts_config.ts_layer_id.end(),
std::begin(vpx_config->ts_layer_id));
} else {
vpx_config->ts_number_layers = 1;
vpx_config->ts_rate_decimator[0] = 1;
vpx_config->ts_periodicity = 1;
vpx_config->ts_layer_id[0] = 0;
}
if (encoder_config.rc_target_bitrate.has_value()) {
vpx_config->rc_target_bitrate = encoder_config.rc_target_bitrate.value();
}
if (encoder_config.rc_max_quantizer.has_value()) {
vpx_config->rc_max_quantizer = encoder_config.rc_max_quantizer.value();
}
if (encoder_config.g_error_resilient.has_value()) {
vpx_config->g_error_resilient = encoder_config.g_error_resilient.value();
}
}
bool IsCompatibleVideoFrameBufferType(VideoFrameBuffer::Type left,
VideoFrameBuffer::Type right) {
if (left == VideoFrameBuffer::Type::kI420 ||
left == VideoFrameBuffer::Type::kI420A) {
// LibvpxVp8Encoder does not care about the alpha channel, I420A and I420
// are considered compatible.
return right == VideoFrameBuffer::Type::kI420 ||
right == VideoFrameBuffer::Type::kI420A;
}
return left == right;
}
void SetRawImagePlanes(vpx_image_t* raw_image, VideoFrameBuffer* buffer) {
switch (buffer->type()) {
case VideoFrameBuffer::Type::kI420:
case VideoFrameBuffer::Type::kI420A: {
const I420BufferInterface* i420_buffer = buffer->GetI420();
RTC_DCHECK(i420_buffer);
raw_image->planes[VPX_PLANE_Y] =
const_cast<uint8_t*>(i420_buffer->DataY());
raw_image->planes[VPX_PLANE_U] =
const_cast<uint8_t*>(i420_buffer->DataU());
raw_image->planes[VPX_PLANE_V] =
const_cast<uint8_t*>(i420_buffer->DataV());
raw_image->stride[VPX_PLANE_Y] = i420_buffer->StrideY();
raw_image->stride[VPX_PLANE_U] = i420_buffer->StrideU();
raw_image->stride[VPX_PLANE_V] = i420_buffer->StrideV();
break;
}
case VideoFrameBuffer::Type::kNV12: {
const NV12BufferInterface* nv12_buffer = buffer->GetNV12();
RTC_DCHECK(nv12_buffer);
raw_image->planes[VPX_PLANE_Y] =
const_cast<uint8_t*>(nv12_buffer->DataY());
raw_image->planes[VPX_PLANE_U] =
const_cast<uint8_t*>(nv12_buffer->DataUV());
raw_image->planes[VPX_PLANE_V] = raw_image->planes[VPX_PLANE_U] + 1;
raw_image->stride[VPX_PLANE_Y] = nv12_buffer->StrideY();
raw_image->stride[VPX_PLANE_U] = nv12_buffer->StrideUV();
raw_image->stride[VPX_PLANE_V] = nv12_buffer->StrideUV();
break;
}
default:
RTC_DCHECK_NOTREACHED();
}
}
} // namespace
std::unique_ptr<VideoEncoder> VP8Encoder::Create() {
return std::make_unique<LibvpxVp8Encoder>(LibvpxInterface::Create(),
VP8Encoder::Settings());
}
std::unique_ptr<VideoEncoder> VP8Encoder::Create(
VP8Encoder::Settings settings) {
return std::make_unique<LibvpxVp8Encoder>(LibvpxInterface::Create(),
std::move(settings));
}
vpx_enc_frame_flags_t LibvpxVp8Encoder::EncodeFlags(
const Vp8FrameConfig& references) {
RTC_DCHECK(!references.drop_frame);
vpx_enc_frame_flags_t flags = 0;
if ((references.last_buffer_flags &
Vp8FrameConfig::BufferFlags::kReference) == 0)
flags |= VP8_EFLAG_NO_REF_LAST;
if ((references.last_buffer_flags & Vp8FrameConfig::BufferFlags::kUpdate) ==
0)
flags |= VP8_EFLAG_NO_UPD_LAST;
if ((references.golden_buffer_flags &
Vp8FrameConfig::BufferFlags::kReference) == 0)
flags |= VP8_EFLAG_NO_REF_GF;
if ((references.golden_buffer_flags & Vp8FrameConfig::BufferFlags::kUpdate) ==
0)
flags |= VP8_EFLAG_NO_UPD_GF;
if ((references.arf_buffer_flags & Vp8FrameConfig::BufferFlags::kReference) ==
0)
flags |= VP8_EFLAG_NO_REF_ARF;
if ((references.arf_buffer_flags & Vp8FrameConfig::BufferFlags::kUpdate) == 0)
flags |= VP8_EFLAG_NO_UPD_ARF;
if (references.freeze_entropy)
flags |= VP8_EFLAG_NO_UPD_ENTROPY;
return flags;
}
LibvpxVp8Encoder::LibvpxVp8Encoder(std::unique_ptr<LibvpxInterface> interface,
VP8Encoder::Settings settings)
: libvpx_(std::move(interface)),
rate_control_settings_(RateControlSettings::ParseFromFieldTrials()),
frame_buffer_controller_factory_(
std::move(settings.frame_buffer_controller_factory)),
resolution_bitrate_limits_(std::move(settings.resolution_bitrate_limits)),
key_frame_request_(kMaxSimulcastStreams, false),
variable_framerate_experiment_(ParseVariableFramerateConfig(
"WebRTC-VP8VariableFramerateScreenshare")),
framerate_controller_(variable_framerate_experiment_.framerate_limit) {
// TODO(eladalon/ilnik): These reservations might be wasting memory.
// InitEncode() is resizing to the actual size, which might be smaller.
raw_images_.reserve(kMaxSimulcastStreams);
encoded_images_.reserve(kMaxSimulcastStreams);
send_stream_.reserve(kMaxSimulcastStreams);
cpu_speed_.assign(kMaxSimulcastStreams, cpu_speed_default_);
encoders_.reserve(kMaxSimulcastStreams);
vpx_configs_.reserve(kMaxSimulcastStreams);
config_overrides_.reserve(kMaxSimulcastStreams);
downsampling_factors_.reserve(kMaxSimulcastStreams);
}
LibvpxVp8Encoder::~LibvpxVp8Encoder() {
Release();
}
int LibvpxVp8Encoder::Release() {
int ret_val = WEBRTC_VIDEO_CODEC_OK;
encoded_images_.clear();
if (inited_) {
for (auto it = encoders_.rbegin(); it != encoders_.rend(); ++it) {
if (libvpx_->codec_destroy(&*it)) {
ret_val = WEBRTC_VIDEO_CODEC_MEMORY;
}
}
}
encoders_.clear();
vpx_configs_.clear();
config_overrides_.clear();
send_stream_.clear();
cpu_speed_.clear();
for (auto it = raw_images_.rbegin(); it != raw_images_.rend(); ++it) {
libvpx_->img_free(&*it);
}
raw_images_.clear();
frame_buffer_controller_.reset();
inited_ = false;
return ret_val;
}
void LibvpxVp8Encoder::SetRates(const RateControlParameters& parameters) {
if (!inited_) {
RTC_LOG(LS_WARNING) << "SetRates() while not initialize";
return;
}
if (encoders_[0].err) {
RTC_LOG(LS_WARNING) << "Encoder in error state.";
return;
}
if (parameters.framerate_fps < 1.0) {
RTC_LOG(LS_WARNING) << "Unsupported framerate (must be >= 1.0): "
<< parameters.framerate_fps;
return;
}
if (parameters.bitrate.get_sum_bps() == 0) {
// Encoder paused, turn off all encoding.
const int num_streams = static_cast<size_t>(encoders_.size());
for (int i = 0; i < num_streams; ++i)
SetStreamState(false, i);
return;
}
codec_.maxFramerate = static_cast<uint32_t>(parameters.framerate_fps + 0.5);
if (encoders_.size() > 1) {
// If we have more than 1 stream, reduce the qp_max for the low resolution
// stream if frame rate is not too low. The trade-off with lower qp_max is
// possibly more dropped frames, so we only do this if the frame rate is
// above some threshold (base temporal layer is down to 1/4 for 3 layers).
// We may want to condition this on bitrate later.
if (rate_control_settings_.Vp8BoostBaseLayerQuality() &&
parameters.framerate_fps > 20.0) {
vpx_configs_[encoders_.size() - 1].rc_max_quantizer = 45;
} else {
// Go back to default value set in InitEncode.
vpx_configs_[encoders_.size() - 1].rc_max_quantizer = qp_max_;
}
}
for (size_t i = 0; i < encoders_.size(); ++i) {
const size_t stream_idx = encoders_.size() - 1 - i;
unsigned int target_bitrate_kbps =
parameters.bitrate.GetSpatialLayerSum(stream_idx) / 1000;
bool send_stream = target_bitrate_kbps > 0;
if (send_stream || encoders_.size() > 1)
SetStreamState(send_stream, stream_idx);
vpx_configs_[i].rc_target_bitrate = target_bitrate_kbps;
if (send_stream) {
frame_buffer_controller_->OnRatesUpdated(
stream_idx, parameters.bitrate.GetTemporalLayerAllocation(stream_idx),
static_cast<int>(parameters.framerate_fps + 0.5));
}
UpdateVpxConfiguration(stream_idx);
vpx_codec_err_t err =
libvpx_->codec_enc_config_set(&encoders_[i], &vpx_configs_[i]);
if (err != VPX_CODEC_OK) {
RTC_LOG(LS_WARNING) << "Error configuring codec, error code: " << err
<< ", details: "
<< libvpx_->codec_error_detail(&encoders_[i]);
}
}
}
void LibvpxVp8Encoder::OnPacketLossRateUpdate(float packet_loss_rate) {
// TODO(bugs.webrtc.org/10431): Replace condition by DCHECK.
if (frame_buffer_controller_) {
frame_buffer_controller_->OnPacketLossRateUpdate(packet_loss_rate);
}
}
void LibvpxVp8Encoder::OnRttUpdate(int64_t rtt_ms) {
// TODO(bugs.webrtc.org/10431): Replace condition by DCHECK.
if (frame_buffer_controller_) {
frame_buffer_controller_->OnRttUpdate(rtt_ms);
}
}
void LibvpxVp8Encoder::OnLossNotification(
const LossNotification& loss_notification) {
if (frame_buffer_controller_) {
frame_buffer_controller_->OnLossNotification(loss_notification);
}
}
void LibvpxVp8Encoder::SetStreamState(bool send_stream, int stream_idx) {
if (send_stream && !send_stream_[stream_idx]) {
// Need a key frame if we have not sent this stream before.
key_frame_request_[stream_idx] = true;
}
send_stream_[stream_idx] = send_stream;
}
void LibvpxVp8Encoder::SetFecControllerOverride(
FecControllerOverride* fec_controller_override) {
// TODO(bugs.webrtc.org/10769): Update downstream and remove ability to
// pass nullptr.
// RTC_DCHECK(fec_controller_override);
RTC_DCHECK(!fec_controller_override_);
fec_controller_override_ = fec_controller_override;
}
// TODO(eladalon): s/inst/codec_settings/g.
int LibvpxVp8Encoder::InitEncode(const VideoCodec* inst,
const VideoEncoder::Settings& settings) {
if (inst == NULL) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
if (inst->maxFramerate < 1) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
// allow zero to represent an unspecified maxBitRate
if (inst->maxBitrate > 0 && inst->startBitrate > inst->maxBitrate) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
if (inst->width < 1 || inst->height < 1) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
if (settings.number_of_cores < 1) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
if (absl::optional<ScalabilityMode> scalability_mode =
inst->GetScalabilityMode();
scalability_mode.has_value() &&
!VP8SupportsScalabilityMode(*scalability_mode)) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
num_active_streams_ = 0;
for (int i = 0; i < inst->numberOfSimulcastStreams; ++i) {
if (inst->simulcastStream[i].active) {
++num_active_streams_;
}
}
if (inst->numberOfSimulcastStreams == 0 && inst->active) {
num_active_streams_ = 1;
}
if (inst->VP8().automaticResizeOn && num_active_streams_ > 1) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
// Use the previous pixel format to avoid extra image allocations.
vpx_img_fmt_t pixel_format =
raw_images_.empty() ? VPX_IMG_FMT_I420 : raw_images_[0].fmt;
int retVal = Release();
if (retVal < 0) {
return retVal;
}
int number_of_streams = SimulcastUtility::NumberOfSimulcastStreams(*inst);
if (number_of_streams > 1 &&
!SimulcastUtility::ValidSimulcastParameters(*inst, number_of_streams)) {
return WEBRTC_VIDEO_CODEC_ERR_SIMULCAST_PARAMETERS_NOT_SUPPORTED;
}
RTC_DCHECK(!frame_buffer_controller_);
if (frame_buffer_controller_factory_) {
frame_buffer_controller_ = frame_buffer_controller_factory_->Create(
*inst, settings, fec_controller_override_);
} else {
Vp8TemporalLayersFactory factory;
frame_buffer_controller_ =
factory.Create(*inst, settings, fec_controller_override_);
}
RTC_DCHECK(frame_buffer_controller_);
number_of_cores_ = settings.number_of_cores;
timestamp_ = 0;
codec_ = *inst;
// Code expects simulcastStream resolutions to be correct, make sure they are
// filled even when there are no simulcast layers.
if (codec_.numberOfSimulcastStreams == 0) {
codec_.simulcastStream[0].width = codec_.width;
codec_.simulcastStream[0].height = codec_.height;
}
encoded_images_.resize(number_of_streams);
encoders_.resize(number_of_streams);
vpx_configs_.resize(number_of_streams);
config_overrides_.resize(number_of_streams);
downsampling_factors_.resize(number_of_streams);
raw_images_.resize(number_of_streams);
send_stream_.resize(number_of_streams);
send_stream_[0] = true; // For non-simulcast case.
cpu_speed_.resize(number_of_streams);
std::fill(key_frame_request_.begin(), key_frame_request_.end(), false);
int idx = number_of_streams - 1;
for (int i = 0; i < (number_of_streams - 1); ++i, --idx) {
int gcd = GCD(inst->simulcastStream[idx].width,
inst->simulcastStream[idx - 1].width);
downsampling_factors_[i].num = inst->simulcastStream[idx].width / gcd;
downsampling_factors_[i].den = inst->simulcastStream[idx - 1].width / gcd;
send_stream_[i] = false;
}
if (number_of_streams > 1) {
send_stream_[number_of_streams - 1] = false;
downsampling_factors_[number_of_streams - 1].num = 1;
downsampling_factors_[number_of_streams - 1].den = 1;
}
// populate encoder configuration with default values
if (libvpx_->codec_enc_config_default(vpx_codec_vp8_cx(), &vpx_configs_[0],
0)) {
return WEBRTC_VIDEO_CODEC_ERROR;
}
// setting the time base of the codec
vpx_configs_[0].g_timebase.num = 1;
vpx_configs_[0].g_timebase.den = kRtpTicksPerSecond;
vpx_configs_[0].g_lag_in_frames = 0; // 0- no frame lagging
// Set the error resilience mode for temporal layers (but not simulcast).
vpx_configs_[0].g_error_resilient =
(SimulcastUtility::NumberOfTemporalLayers(*inst, 0) > 1)
? VPX_ERROR_RESILIENT_DEFAULT
: 0;
// Override the error resilience mode if this is not simulcast, but we are
// using temporal layers.
if (field_trial::IsEnabled(kVp8ForcePartitionResilience) &&
(number_of_streams == 1) &&
(SimulcastUtility::NumberOfTemporalLayers(*inst, 0) > 1)) {
RTC_LOG(LS_INFO) << "Overriding g_error_resilient from "
<< vpx_configs_[0].g_error_resilient << " to "
<< VPX_ERROR_RESILIENT_PARTITIONS;
vpx_configs_[0].g_error_resilient = VPX_ERROR_RESILIENT_PARTITIONS;
}
// rate control settings
vpx_configs_[0].rc_dropframe_thresh = FrameDropThreshold(0);
vpx_configs_[0].rc_end_usage = VPX_CBR;
vpx_configs_[0].g_pass = VPX_RC_ONE_PASS;
// Handle resizing outside of libvpx.
vpx_configs_[0].rc_resize_allowed = 0;
vpx_configs_[0].rc_min_quantizer =
codec_.mode == VideoCodecMode::kScreensharing ? 12 : 2;
if (inst->qpMax >= vpx_configs_[0].rc_min_quantizer) {
qp_max_ = inst->qpMax;
}
if (rate_control_settings_.LibvpxVp8QpMax()) {
qp_max_ = std::max(rate_control_settings_.LibvpxVp8QpMax().value(),
static_cast<int>(vpx_configs_[0].rc_min_quantizer));
}
vpx_configs_[0].rc_max_quantizer = qp_max_;
vpx_configs_[0].rc_undershoot_pct = 100;
vpx_configs_[0].rc_overshoot_pct = 15;
vpx_configs_[0].rc_buf_initial_sz = 500;
vpx_configs_[0].rc_buf_optimal_sz = 600;
vpx_configs_[0].rc_buf_sz = 1000;
// Set the maximum target size of any key-frame.
rc_max_intra_target_ = MaxIntraTarget(vpx_configs_[0].rc_buf_optimal_sz);
if (inst->VP8().keyFrameInterval > 0) {
vpx_configs_[0].kf_mode = VPX_KF_AUTO;
vpx_configs_[0].kf_max_dist = inst->VP8().keyFrameInterval;
} else {
vpx_configs_[0].kf_mode = VPX_KF_DISABLED;
}
// Allow the user to set the complexity for the base stream.
switch (inst->GetVideoEncoderComplexity()) {
case VideoCodecComplexity::kComplexityHigh:
cpu_speed_[0] = -5;
break;
case VideoCodecComplexity::kComplexityHigher:
cpu_speed_[0] = -4;
break;
case VideoCodecComplexity::kComplexityMax:
cpu_speed_[0] = -3;
break;
default:
cpu_speed_[0] = -6;
break;
}
cpu_speed_default_ = cpu_speed_[0];
// Set encoding complexity (cpu_speed) based on resolution and/or platform.
cpu_speed_[0] = GetCpuSpeed(inst->width, inst->height);
for (int i = 1; i < number_of_streams; ++i) {
cpu_speed_[i] =
GetCpuSpeed(inst->simulcastStream[number_of_streams - 1 - i].width,
inst->simulcastStream[number_of_streams - 1 - i].height);
}
vpx_configs_[0].g_w = inst->width;
vpx_configs_[0].g_h = inst->height;
// Determine number of threads based on the image size and #cores.
// TODO(fbarchard): Consider number of Simulcast layers.
vpx_configs_[0].g_threads = NumberOfThreads(
vpx_configs_[0].g_w, vpx_configs_[0].g_h, settings.number_of_cores);
if (settings.encoder_thread_limit.has_value()) {
RTC_DCHECK_GE(settings.encoder_thread_limit.value(), 1);
vpx_configs_[0].g_threads = std::min(
vpx_configs_[0].g_threads,
static_cast<unsigned int>(settings.encoder_thread_limit.value()));
}
// Creating a wrapper to the image - setting image data to NULL.
// Actual pointer will be set in encode. Setting align to 1, as it
// is meaningless (no memory allocation is done here).
libvpx_->img_wrap(&raw_images_[0], pixel_format, inst->width, inst->height, 1,
NULL);
// Note the order we use is different from webm, we have lowest resolution
// at position 0 and they have highest resolution at position 0.
const size_t stream_idx_cfg_0 = encoders_.size() - 1;
SimulcastRateAllocator init_allocator(codec_);
VideoBitrateAllocation allocation =
init_allocator.Allocate(VideoBitrateAllocationParameters(
inst->startBitrate * 1000, inst->maxFramerate));
std::vector<uint32_t> stream_bitrates;
for (int i = 0; i == 0 || i < inst->numberOfSimulcastStreams; ++i) {
uint32_t bitrate = allocation.GetSpatialLayerSum(i) / 1000;
stream_bitrates.push_back(bitrate);
}
vpx_configs_[0].rc_target_bitrate = stream_bitrates[stream_idx_cfg_0];
if (stream_bitrates[stream_idx_cfg_0] > 0) {
uint32_t maxFramerate =
inst->simulcastStream[stream_idx_cfg_0].maxFramerate;
if (!maxFramerate) {
maxFramerate = inst->maxFramerate;
}
frame_buffer_controller_->OnRatesUpdated(
stream_idx_cfg_0,
allocation.GetTemporalLayerAllocation(stream_idx_cfg_0), maxFramerate);
}
frame_buffer_controller_->SetQpLimits(stream_idx_cfg_0,
vpx_configs_[0].rc_min_quantizer,
vpx_configs_[0].rc_max_quantizer);
UpdateVpxConfiguration(stream_idx_cfg_0);
vpx_configs_[0].rc_dropframe_thresh = FrameDropThreshold(stream_idx_cfg_0);
for (size_t i = 1; i < encoders_.size(); ++i) {
const size_t stream_idx = encoders_.size() - 1 - i;
memcpy(&vpx_configs_[i], &vpx_configs_[0], sizeof(vpx_configs_[0]));
vpx_configs_[i].g_w = inst->simulcastStream[stream_idx].width;
vpx_configs_[i].g_h = inst->simulcastStream[stream_idx].height;
// Use 1 thread for lower resolutions.
vpx_configs_[i].g_threads = 1;
vpx_configs_[i].rc_dropframe_thresh = FrameDropThreshold(stream_idx);
// Setting alignment to 32 - as that ensures at least 16 for all
// planes (32 for Y, 16 for U,V). Libvpx sets the requested stride for
// the y plane, but only half of it to the u and v planes.
libvpx_->img_alloc(
&raw_images_[i], pixel_format, inst->simulcastStream[stream_idx].width,
inst->simulcastStream[stream_idx].height, kVp832ByteAlign);
SetStreamState(stream_bitrates[stream_idx] > 0, stream_idx);
vpx_configs_[i].rc_target_bitrate = stream_bitrates[stream_idx];
if (stream_bitrates[stream_idx] > 0) {
uint32_t maxFramerate = inst->simulcastStream[stream_idx].maxFramerate;
if (!maxFramerate) {
maxFramerate = inst->maxFramerate;
}
frame_buffer_controller_->OnRatesUpdated(
stream_idx, allocation.GetTemporalLayerAllocation(stream_idx),
maxFramerate);
}
frame_buffer_controller_->SetQpLimits(stream_idx,
vpx_configs_[i].rc_min_quantizer,
vpx_configs_[i].rc_max_quantizer);
UpdateVpxConfiguration(stream_idx);
}
return InitAndSetControlSettings();
}
int LibvpxVp8Encoder::GetCpuSpeed(int width, int height) {
#if defined(WEBRTC_ARCH_ARM) || defined(WEBRTC_ARCH_ARM64) || \
defined(WEBRTC_ANDROID)
// On mobile platform, use a lower speed setting for lower resolutions for
// CPUs with 4 or more cores.
RTC_DCHECK_GT(number_of_cores_, 0);
if (experimental_cpu_speed_config_arm_
.GetValue(width * height, number_of_cores_)
.has_value()) {
return experimental_cpu_speed_config_arm_
.GetValue(width * height, number_of_cores_)
.value();
}
if (number_of_cores_ <= 3)
return -12;
if (width * height <= 352 * 288)
return -8;
else if (width * height <= 640 * 480)
return -10;
else
return -12;
#else
// For non-ARM, increase encoding complexity (i.e., use lower speed setting)
// if resolution is below CIF. Otherwise, keep the default/user setting
// (`cpu_speed_default_`) set on InitEncode via VP8().complexity.
if (width * height < 352 * 288)
return (cpu_speed_default_ < -4) ? -4 : cpu_speed_default_;
else
return cpu_speed_default_;
#endif
}
int LibvpxVp8Encoder::NumberOfThreads(int width, int height, int cpus) {
#if defined(WEBRTC_ANDROID)
if (width * height >= 320 * 180) {
if (cpus >= 4) {
// 3 threads for CPUs with 4 and more cores since most of times only 4
// cores will be active.
return 3;
} else if (cpus == 3 || cpus == 2) {
return 2;
} else {
return 1;
}
}
return 1;
#else
#if defined(WEBRTC_IOS)
std::string trial_string =
field_trial::FindFullName(kVP8IosMaxNumberOfThreadFieldTrial);
FieldTrialParameter<int> max_thread_number(
kVP8IosMaxNumberOfThreadFieldTrialParameter, 0);
ParseFieldTrial({&max_thread_number}, trial_string);
if (max_thread_number.Get() > 0) {
if (width * height < 320 * 180) {
return 1; // Use single thread for small screens
}
// thread number must be less than or equal to the number of CPUs.
return std::min(cpus, max_thread_number.Get());
}
#endif // defined(WEBRTC_IOS)
if (width * height >= 1920 * 1080 && cpus > 8) {
return 8; // 8 threads for 1080p on high perf machines.
} else if (width * height > 1280 * 960 && cpus >= 6) {
// 3 threads for 1080p.
return 3;
} else if (width * height > 640 * 480 && cpus >= 3) {
// Default 2 threads for qHD/HD, but allow 3 if core count is high enough,
// as this will allow more margin for high-core/low clock machines or if
// not built with highest optimization.
if (cpus >= 6) {
return 3;
}
return 2;
} else {
// 1 thread for VGA or less.
return 1;
}
#endif
}
int LibvpxVp8Encoder::InitAndSetControlSettings() {
vpx_codec_flags_t flags = 0;
flags |= VPX_CODEC_USE_OUTPUT_PARTITION;
if (encoders_.size() > 1) {
int error = libvpx_->codec_enc_init_multi(
&encoders_[0], vpx_codec_vp8_cx(), &vpx_configs_[0], encoders_.size(),
flags, &downsampling_factors_[0]);
if (error) {
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
} else {
if (libvpx_->codec_enc_init(&encoders_[0], vpx_codec_vp8_cx(),
&vpx_configs_[0], flags)) {
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
}
// Enable denoising for the highest resolution stream, and for
// the second highest resolution if we are doing more than 2
// spatial layers/streams.
// TODO(holmer): Investigate possibility of adding a libvpx API
// for getting the denoised frame from the encoder and using that
// when encoding lower resolution streams. Would it work with the
// multi-res encoding feature?
denoiserState denoiser_state = kDenoiserOnYOnly;
#if defined(WEBRTC_ARCH_ARM) || defined(WEBRTC_ARCH_ARM64) || \
defined(WEBRTC_ANDROID)
denoiser_state = kDenoiserOnYOnly;
#else
denoiser_state = kDenoiserOnAdaptive;
#endif
libvpx_->codec_control(
&encoders_[0], VP8E_SET_NOISE_SENSITIVITY,
codec_.VP8()->denoisingOn ? denoiser_state : kDenoiserOff);
if (encoders_.size() > 2) {
libvpx_->codec_control(
&encoders_[1], VP8E_SET_NOISE_SENSITIVITY,
codec_.VP8()->denoisingOn ? denoiser_state : kDenoiserOff);
}
for (size_t i = 0; i < encoders_.size(); ++i) {
// Allow more screen content to be detected as static.
libvpx_->codec_control(
&(encoders_[i]), VP8E_SET_STATIC_THRESHOLD,
codec_.mode == VideoCodecMode::kScreensharing ? 100u : 1u);
libvpx_->codec_control(&(encoders_[i]), VP8E_SET_CPUUSED, cpu_speed_[i]);
libvpx_->codec_control(
&(encoders_[i]), VP8E_SET_TOKEN_PARTITIONS,
static_cast<vp8e_token_partitions>(kTokenPartitions));
libvpx_->codec_control(&(encoders_[i]), VP8E_SET_MAX_INTRA_BITRATE_PCT,
rc_max_intra_target_);
// VP8E_SET_SCREEN_CONTENT_MODE 2 = screen content with more aggressive
// rate control (drop frames on large target bitrate overshoot)
libvpx_->codec_control(
&(encoders_[i]), VP8E_SET_SCREEN_CONTENT_MODE,
codec_.mode == VideoCodecMode::kScreensharing ? 2u : 0u);
}
inited_ = true;
return WEBRTC_VIDEO_CODEC_OK;
}
uint32_t LibvpxVp8Encoder::MaxIntraTarget(uint32_t optimalBuffersize) {
// Set max to the optimal buffer level (normalized by target BR),
// and scaled by a scalePar.
// Max target size = scalePar * optimalBufferSize * targetBR[Kbps].
// This values is presented in percentage of perFrameBw:
// perFrameBw = targetBR[Kbps] * 1000 / frameRate.
// The target in % is as follows:
float scalePar = 0.5;
uint32_t targetPct = optimalBuffersize * scalePar * codec_.maxFramerate / 10;
// Don't go below 3 times the per frame bandwidth.
const uint32_t minIntraTh = 300;
return (targetPct < minIntraTh) ? minIntraTh : targetPct;
}
uint32_t LibvpxVp8Encoder::FrameDropThreshold(size_t spatial_idx) const {
if (!codec_.GetFrameDropEnabled()) {
return 0;
}
// If temporal layers are used, they get to override the frame dropping
// setting, as eg. ScreenshareLayers does not work as intended with frame
// dropping on and DefaultTemporalLayers will have performance issues with
// frame dropping off.
RTC_DCHECK(frame_buffer_controller_);
RTC_DCHECK_LT(spatial_idx, frame_buffer_controller_->StreamCount());
return frame_buffer_controller_->SupportsEncoderFrameDropping(spatial_idx)
? 30
: 0;
}
size_t LibvpxVp8Encoder::SteadyStateSize(int sid, int tid) {
const int encoder_id = encoders_.size() - 1 - sid;
size_t bitrate_bps;
float fps;
if ((SimulcastUtility::IsConferenceModeScreenshare(codec_) && sid == 0) ||
vpx_configs_[encoder_id].ts_number_layers <= 1) {
// In conference screenshare there's no defined per temporal layer bitrate
// and framerate.
bitrate_bps = vpx_configs_[encoder_id].rc_target_bitrate * 1000;
fps = codec_.maxFramerate;
} else {
bitrate_bps = vpx_configs_[encoder_id].ts_target_bitrate[tid] * 1000;
fps = codec_.maxFramerate /
fmax(vpx_configs_[encoder_id].ts_rate_decimator[tid], 1.0);
if (tid > 0) {
// Layer bitrate and fps are counted as a partial sums.
bitrate_bps -= vpx_configs_[encoder_id].ts_target_bitrate[tid - 1] * 1000;
fps = codec_.maxFramerate /
fmax(vpx_configs_[encoder_id].ts_rate_decimator[tid - 1], 1.0);
}
}
if (fps < 1e-9)
return 0;
return static_cast<size_t>(
bitrate_bps / (8 * fps) *
(100 -
variable_framerate_experiment_.steady_state_undershoot_percentage) /
100 +
0.5);
}
bool LibvpxVp8Encoder::UpdateVpxConfiguration(size_t stream_index) {
RTC_DCHECK(frame_buffer_controller_);
const size_t config_index = vpx_configs_.size() - 1 - stream_index;
RTC_DCHECK_LT(config_index, config_overrides_.size());
Vp8EncoderConfig* config = &config_overrides_[config_index];
const Vp8EncoderConfig new_config =
frame_buffer_controller_->UpdateConfiguration(stream_index);
if (new_config.reset_previous_configuration_overrides) {
*config = new_config;
return true;
}
const bool changes_made = MaybeExtendVp8EncoderConfig(new_config, config);
// Note that overrides must be applied even if they haven't changed.
RTC_DCHECK_LT(config_index, vpx_configs_.size());
vpx_codec_enc_cfg_t* vpx_config = &vpx_configs_[config_index];
ApplyVp8EncoderConfigToVpxConfig(*config, vpx_config);
return changes_made;
}
int LibvpxVp8Encoder::Encode(const VideoFrame& frame,
const std::vector<VideoFrameType>* frame_types) {
RTC_DCHECK_EQ(frame.width(), codec_.width);
RTC_DCHECK_EQ(frame.height(), codec_.height);
if (!inited_)
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
if (encoded_complete_callback_ == NULL)
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
bool key_frame_requested = false;
for (size_t i = 0; i < key_frame_request_.size() && i < send_stream_.size();
++i) {
if (key_frame_request_[i] && send_stream_[i]) {
key_frame_requested = true;
break;
}
}
if (!key_frame_requested && frame_types) {
for (size_t i = 0; i < frame_types->size() && i < send_stream_.size();
++i) {
if ((*frame_types)[i] == VideoFrameType::kVideoFrameKey &&
send_stream_[i]) {
key_frame_requested = true;
break;
}
}
}
if (frame.update_rect().IsEmpty() && num_steady_state_frames_ >= 3 &&
!key_frame_requested) {
if (variable_framerate_experiment_.enabled &&
framerate_controller_.DropFrame(frame.timestamp() / kRtpTicksPerMs)) {
return WEBRTC_VIDEO_CODEC_OK;
}
framerate_controller_.AddFrame(frame.timestamp() / kRtpTicksPerMs);
}
bool send_key_frame = key_frame_requested;
bool drop_frame = false;
bool retransmission_allowed = true;
Vp8FrameConfig tl_configs[kMaxSimulcastStreams];
for (size_t i = 0; i < encoders_.size(); ++i) {
tl_configs[i] =
frame_buffer_controller_->NextFrameConfig(i, frame.timestamp());
send_key_frame |= tl_configs[i].IntraFrame();
drop_frame |= tl_configs[i].drop_frame;
RTC_DCHECK(i == 0 ||
retransmission_allowed == tl_configs[i].retransmission_allowed);
retransmission_allowed = tl_configs[i].retransmission_allowed;
}
if (drop_frame && !send_key_frame) {
return WEBRTC_VIDEO_CODEC_OK;
}
vpx_enc_frame_flags_t flags[kMaxSimulcastStreams];
for (size_t i = 0; i < encoders_.size(); ++i) {
flags[i] = send_key_frame ? VPX_EFLAG_FORCE_KF : EncodeFlags(tl_configs[i]);
}
// Scale and map buffers and set `raw_images_` to hold pointers to the result.
// Because `raw_images_` are set to hold pointers to the prepared buffers, we
// need to keep these buffers alive through reference counting until after
// encoding is complete.
std::vector<rtc::scoped_refptr<VideoFrameBuffer>> prepared_buffers =
PrepareBuffers(frame.video_frame_buffer());
if (prepared_buffers.empty()) {
return WEBRTC_VIDEO_CODEC_ERROR;
}
struct CleanUpOnExit {
explicit CleanUpOnExit(
vpx_image_t* raw_image,
std::vector<rtc::scoped_refptr<VideoFrameBuffer>> prepared_buffers)
: raw_image_(raw_image),
prepared_buffers_(std::move(prepared_buffers)) {}
~CleanUpOnExit() {
raw_image_->planes[VPX_PLANE_Y] = nullptr;
raw_image_->planes[VPX_PLANE_U] = nullptr;
raw_image_->planes[VPX_PLANE_V] = nullptr;
}
vpx_image_t* raw_image_;
std::vector<rtc::scoped_refptr<VideoFrameBuffer>> prepared_buffers_;
} clean_up_on_exit(&raw_images_[0], std::move(prepared_buffers));
if (send_key_frame) {
// Adapt the size of the key frame when in screenshare with 1 temporal
// layer.
if (encoders_.size() == 1 &&
codec_.mode == VideoCodecMode::kScreensharing &&
codec_.VP8()->numberOfTemporalLayers <= 1) {
const uint32_t forceKeyFrameIntraTh = 100;
libvpx_->codec_control(&(encoders_[0]), VP8E_SET_MAX_INTRA_BITRATE_PCT,
forceKeyFrameIntraTh);
}
std::fill(key_frame_request_.begin(), key_frame_request_.end(), false);
}
// Set the encoder frame flags and temporal layer_id for each spatial stream.
// Note that streams are defined starting from lowest resolution at
// position 0 to highest resolution at position |encoders_.size() - 1|,
// whereas `encoder_` is from highest to lowest resolution.
for (size_t i = 0; i < encoders_.size(); ++i) {
const size_t stream_idx = encoders_.size() - 1 - i;
if (UpdateVpxConfiguration(stream_idx)) {
if (libvpx_->codec_enc_config_set(&encoders_[i], &vpx_configs_[i]))
return WEBRTC_VIDEO_CODEC_ERROR;
}
libvpx_->codec_control(&encoders_[i], VP8E_SET_FRAME_FLAGS,
static_cast<int>(flags[stream_idx]));
libvpx_->codec_control(&encoders_[i], VP8E_SET_TEMPORAL_LAYER_ID,
tl_configs[i].encoder_layer_id);
}
// TODO(holmer): Ideally the duration should be the timestamp diff of this
// frame and the next frame to be encoded, which we don't have. Instead we
// would like to use the duration of the previous frame. Unfortunately the
// rate control seems to be off with that setup. Using the average input
// frame rate to calculate an average duration for now.
RTC_DCHECK_GT(codec_.maxFramerate, 0);
uint32_t duration = kRtpTicksPerSecond / codec_.maxFramerate;
int error = WEBRTC_VIDEO_CODEC_OK;
int num_tries = 0;
// If the first try returns WEBRTC_VIDEO_CODEC_TARGET_BITRATE_OVERSHOOT
// the frame must be reencoded with the same parameters again because
// target bitrate is exceeded and encoder state has been reset.
while (num_tries == 0 ||
(num_tries == 1 &&
error == WEBRTC_VIDEO_CODEC_TARGET_BITRATE_OVERSHOOT)) {
++num_tries;
// Note we must pass 0 for `flags` field in encode call below since they are
// set above in `libvpx_interface_->vpx_codec_control_` function for each
// encoder/spatial layer.
error = libvpx_->codec_encode(&encoders_[0], &raw_images_[0], timestamp_,
duration, 0, VPX_DL_REALTIME);
// Reset specific intra frame thresholds, following the key frame.
if (send_key_frame) {
libvpx_->codec_control(&(encoders_[0]), VP8E_SET_MAX_INTRA_BITRATE_PCT,
rc_max_intra_target_);
}
if (error)
return WEBRTC_VIDEO_CODEC_ERROR;
// Examines frame timestamps only.
error = GetEncodedPartitions(frame, retransmission_allowed);
}
// TODO(sprang): Shouldn't we use the frame timestamp instead?
timestamp_ += duration;
return error;
}
void LibvpxVp8Encoder::PopulateCodecSpecific(CodecSpecificInfo* codec_specific,
const vpx_codec_cx_pkt_t& pkt,
int stream_idx,
int encoder_idx,
uint32_t timestamp) {
RTC_DCHECK(codec_specific);
codec_specific->codecType = kVideoCodecVP8;
codec_specific->codecSpecific.VP8.keyIdx =
kNoKeyIdx; // TODO(hlundin) populate this
codec_specific->codecSpecific.VP8.nonReference =
(pkt.data.frame.flags & VPX_FRAME_IS_DROPPABLE) != 0;
int qp = 0;
vpx_codec_control(&encoders_[encoder_idx], VP8E_GET_LAST_QUANTIZER_64, &qp);
bool is_keyframe = (pkt.data.frame.flags & VPX_FRAME_IS_KEY) != 0;
frame_buffer_controller_->OnEncodeDone(stream_idx, timestamp,
encoded_images_[encoder_idx].size(),
is_keyframe, qp, codec_specific);
if (is_keyframe && codec_specific->template_structure != absl::nullopt) {
// Number of resolutions must match number of spatial layers, VP8 structures
// expected to use single spatial layer. Templates must be ordered by
// spatial_id, so assumption there is exactly one spatial layer is same as
// assumption last template uses spatial_id = 0.
// This check catches potential scenario where template_structure is shared
// across multiple vp8 streams and they are distinguished using spatial_id.
// Assigning single resolution doesn't support such scenario, i.e. assumes
// vp8 simulcast is sent using multiple ssrcs.
RTC_DCHECK(!codec_specific->template_structure->templates.empty());
RTC_DCHECK_EQ(
codec_specific->template_structure->templates.back().spatial_id, 0);
codec_specific->template_structure->resolutions = {
RenderResolution(pkt.data.frame.width[0], pkt.data.frame.height[0])};
}
switch (vpx_configs_[encoder_idx].ts_number_layers) {
case 1:
codec_specific->scalability_mode = ScalabilityMode::kL1T1;
break;
case 2:
codec_specific->scalability_mode = ScalabilityMode::kL1T2;
break;
case 3:
codec_specific->scalability_mode = ScalabilityMode::kL1T3;
break;
}
}
int LibvpxVp8Encoder::GetEncodedPartitions(const VideoFrame& input_image,
bool retransmission_allowed) {
int stream_idx = static_cast<int>(encoders_.size()) - 1;
int result = WEBRTC_VIDEO_CODEC_OK;
for (size_t encoder_idx = 0; encoder_idx < encoders_.size();
++encoder_idx, --stream_idx) {
vpx_codec_iter_t iter = NULL;
encoded_images_[encoder_idx].set_size(0);
encoded_images_[encoder_idx]._frameType = VideoFrameType::kVideoFrameDelta;
CodecSpecificInfo codec_specific;
const vpx_codec_cx_pkt_t* pkt = NULL;
size_t encoded_size = 0;
while ((pkt = libvpx_->codec_get_cx_data(&encoders_[encoder_idx], &iter)) !=
NULL) {
if (pkt->kind == VPX_CODEC_CX_FRAME_PKT) {
encoded_size += pkt->data.frame.sz;
}
}
auto buffer = EncodedImageBuffer::Create(encoded_size);
iter = NULL;
size_t encoded_pos = 0;
while ((pkt = libvpx_->codec_get_cx_data(&encoders_[encoder_idx], &iter)) !=
NULL) {
switch (pkt->kind) {
case VPX_CODEC_CX_FRAME_PKT: {
RTC_CHECK_LE(encoded_pos + pkt->data.frame.sz, buffer->size());
memcpy(&buffer->data()[encoded_pos], pkt->data.frame.buf,
pkt->data.frame.sz);
encoded_pos += pkt->data.frame.sz;
break;
}
default:
break;
}
// End of frame
if ((pkt->data.frame.flags & VPX_FRAME_IS_FRAGMENT) == 0) {
// check if encoded frame is a key frame
if (pkt->data.frame.flags & VPX_FRAME_IS_KEY) {
encoded_images_[encoder_idx]._frameType =
VideoFrameType::kVideoFrameKey;
}
encoded_images_[encoder_idx].SetEncodedData(buffer);
encoded_images_[encoder_idx].set_size(encoded_pos);
encoded_images_[encoder_idx].SetSimulcastIndex(stream_idx);
PopulateCodecSpecific(&codec_specific, *pkt, stream_idx, encoder_idx,
input_image.timestamp());
if (codec_specific.codecSpecific.VP8.temporalIdx != kNoTemporalIdx) {
encoded_images_[encoder_idx].SetTemporalIndex(
codec_specific.codecSpecific.VP8.temporalIdx);
}
break;
}
}
encoded_images_[encoder_idx].SetTimestamp(input_image.timestamp());
encoded_images_[encoder_idx].SetCaptureTimeIdentifier(
input_image.capture_time_identifier());
encoded_images_[encoder_idx].SetColorSpace(input_image.color_space());
encoded_images_[encoder_idx].SetRetransmissionAllowed(
retransmission_allowed);
if (send_stream_[stream_idx]) {
if (encoded_images_[encoder_idx].size() > 0) {
TRACE_COUNTER_ID1("webrtc", "EncodedFrameSize", encoder_idx,
encoded_images_[encoder_idx].size());
encoded_images_[encoder_idx]._encodedHeight =
codec_.simulcastStream[stream_idx].height;
encoded_images_[encoder_idx]._encodedWidth =
codec_.simulcastStream[stream_idx].width;
int qp_128 = -1;
libvpx_->codec_control(&encoders_[encoder_idx], VP8E_GET_LAST_QUANTIZER,
&qp_128);
encoded_images_[encoder_idx].qp_ = qp_128;
encoded_complete_callback_->OnEncodedImage(encoded_images_[encoder_idx],
&codec_specific);
const size_t steady_state_size = SteadyStateSize(
stream_idx, codec_specific.codecSpecific.VP8.temporalIdx);
if (qp_128 > variable_framerate_experiment_.steady_state_qp ||
encoded_images_[encoder_idx].size() > steady_state_size) {
num_steady_state_frames_ = 0;
} else {
++num_steady_state_frames_;
}
} else if (!frame_buffer_controller_->SupportsEncoderFrameDropping(
stream_idx)) {
result = WEBRTC_VIDEO_CODEC_TARGET_BITRATE_OVERSHOOT;
if (encoded_images_[encoder_idx].size() == 0) {
// Dropped frame that will be re-encoded.
frame_buffer_controller_->OnFrameDropped(stream_idx,
input_image.timestamp());
}
}
}
}
return result;
}
VideoEncoder::EncoderInfo LibvpxVp8Encoder::GetEncoderInfo() const {
EncoderInfo info;
info.supports_native_handle = false;
info.implementation_name = "libvpx";
info.has_trusted_rate_controller =
rate_control_settings_.LibvpxVp8TrustedRateController();
info.is_hardware_accelerated = false;
info.supports_simulcast = true;
if (!resolution_bitrate_limits_.empty()) {
info.resolution_bitrate_limits = resolution_bitrate_limits_;
}
if (encoder_info_override_.requested_resolution_alignment()) {
info.requested_resolution_alignment =
*encoder_info_override_.requested_resolution_alignment();
info.apply_alignment_to_all_simulcast_layers =
encoder_info_override_.apply_alignment_to_all_simulcast_layers();
}
if (!encoder_info_override_.resolution_bitrate_limits().empty()) {
info.resolution_bitrate_limits =
encoder_info_override_.resolution_bitrate_limits();
}
const bool enable_scaling =
num_active_streams_ == 1 &&
(vpx_configs_.empty() || vpx_configs_[0].rc_dropframe_thresh > 0) &&
codec_.VP8().automaticResizeOn;
info.scaling_settings = enable_scaling
? VideoEncoder::ScalingSettings(
kLowVp8QpThreshold, kHighVp8QpThreshold)
: VideoEncoder::ScalingSettings::kOff;
if (rate_control_settings_.LibvpxVp8MinPixels()) {
info.scaling_settings.min_pixels_per_frame =
rate_control_settings_.LibvpxVp8MinPixels().value();
}
info.preferred_pixel_formats = {VideoFrameBuffer::Type::kI420,
VideoFrameBuffer::Type::kNV12};
if (inited_) {
// `encoder_idx` is libvpx index where 0 is highest resolution.
// `si` is simulcast index, where 0 is lowest resolution.
for (size_t si = 0, encoder_idx = encoders_.size() - 1;
si < encoders_.size(); ++si, --encoder_idx) {
info.fps_allocation[si].clear();
if ((codec_.numberOfSimulcastStreams > si &&
!codec_.simulcastStream[si].active) ||
(si == 0 && SimulcastUtility::IsConferenceModeScreenshare(codec_))) {
// No defined frame rate fractions if not active or if using
// ScreenshareLayers, leave vector empty and continue;
continue;
}
if (vpx_configs_[encoder_idx].ts_number_layers <= 1) {
info.fps_allocation[si].push_back(EncoderInfo::kMaxFramerateFraction);
} else {
for (size_t ti = 0; ti < vpx_configs_[encoder_idx].ts_number_layers;
++ti) {
RTC_DCHECK_GT(vpx_configs_[encoder_idx].ts_rate_decimator[ti], 0);
info.fps_allocation[si].push_back(rtc::saturated_cast<uint8_t>(
EncoderInfo::kMaxFramerateFraction /
vpx_configs_[encoder_idx].ts_rate_decimator[ti] +
0.5));
}
}
}
}
return info;
}
int LibvpxVp8Encoder::RegisterEncodeCompleteCallback(
EncodedImageCallback* callback) {
encoded_complete_callback_ = callback;
return WEBRTC_VIDEO_CODEC_OK;
}
void LibvpxVp8Encoder::MaybeUpdatePixelFormat(vpx_img_fmt fmt) {
RTC_DCHECK(!raw_images_.empty());
if (raw_images_[0].fmt == fmt) {
RTC_DCHECK(std::all_of(
std::next(raw_images_.begin()), raw_images_.end(),
[fmt](const vpx_image_t& raw_img) { return raw_img.fmt == fmt; }))
<< "Not all raw images had the right format!";
return;
}
RTC_LOG(LS_INFO) << "Updating vp8 encoder pixel format to "
<< (fmt == VPX_IMG_FMT_NV12 ? "NV12" : "I420");
for (size_t i = 0; i < raw_images_.size(); ++i) {
vpx_image_t& img = raw_images_[i];
auto d_w = img.d_w;
auto d_h = img.d_h;
libvpx_->img_free(&img);
// First image is wrapping the input frame, the rest are allocated.
if (i == 0) {
libvpx_->img_wrap(&img, fmt, d_w, d_h, 1, NULL);
} else {
libvpx_->img_alloc(&img, fmt, d_w, d_h, kVp832ByteAlign);
}
}
}
std::vector<rtc::scoped_refptr<VideoFrameBuffer>>
LibvpxVp8Encoder::PrepareBuffers(rtc::scoped_refptr<VideoFrameBuffer> buffer) {
RTC_DCHECK_EQ(buffer->width(), raw_images_[0].d_w);
RTC_DCHECK_EQ(buffer->height(), raw_images_[0].d_h);
absl::InlinedVector<VideoFrameBuffer::Type, kMaxPreferredPixelFormats>
supported_formats = {VideoFrameBuffer::Type::kI420,
VideoFrameBuffer::Type::kNV12};
rtc::scoped_refptr<VideoFrameBuffer> mapped_buffer;
if (buffer->type() != VideoFrameBuffer::Type::kNative) {
// `buffer` is already mapped.
mapped_buffer = buffer;
} else {
// Attempt to map to one of the supported formats.
mapped_buffer = buffer->GetMappedFrameBuffer(supported_formats);
}
if (!mapped_buffer ||
(absl::c_find(supported_formats, mapped_buffer->type()) ==
supported_formats.end() &&
mapped_buffer->type() != VideoFrameBuffer::Type::kI420A)) {
// Unknown pixel format or unable to map, convert to I420 and prepare that
// buffer instead to ensure Scale() is safe to use.
auto converted_buffer = buffer->ToI420();
if (!converted_buffer) {
RTC_LOG(LS_ERROR) << "Failed to convert "
<< VideoFrameBufferTypeToString(buffer->type())
<< " image to I420. Can't encode frame.";
return {};
}
RTC_CHECK(converted_buffer->type() == VideoFrameBuffer::Type::kI420 ||
converted_buffer->type() == VideoFrameBuffer::Type::kI420A);
// Because `buffer` had to be converted, use `converted_buffer` instead...
buffer = mapped_buffer = converted_buffer;
}
// Maybe update pixel format.
absl::InlinedVector<VideoFrameBuffer::Type, kMaxPreferredPixelFormats>
mapped_type = {mapped_buffer->type()};
switch (mapped_buffer->type()) {
case VideoFrameBuffer::Type::kI420:
case VideoFrameBuffer::Type::kI420A:
MaybeUpdatePixelFormat(VPX_IMG_FMT_I420);
break;
case VideoFrameBuffer::Type::kNV12:
MaybeUpdatePixelFormat(VPX_IMG_FMT_NV12);
break;
default:
RTC_DCHECK_NOTREACHED();
}
// Prepare `raw_images_` from `mapped_buffer` and, if simulcast, scaled
// versions of `buffer`.
std::vector<rtc::scoped_refptr<VideoFrameBuffer>> prepared_buffers;
SetRawImagePlanes(&raw_images_[0], mapped_buffer.get());
prepared_buffers.push_back(mapped_buffer);
for (size_t i = 1; i < encoders_.size(); ++i) {
// Native buffers should implement optimized scaling and is the preferred
// buffer to scale. But if the buffer isn't native, it should be cheaper to
// scale from the previously prepared buffer which is smaller than `buffer`.
VideoFrameBuffer* buffer_to_scale =
buffer->type() == VideoFrameBuffer::Type::kNative
? buffer.get()
: prepared_buffers.back().get();
auto scaled_buffer =
buffer_to_scale->Scale(raw_images_[i].d_w, raw_images_[i].d_h);
if (scaled_buffer->type() == VideoFrameBuffer::Type::kNative) {
auto mapped_scaled_buffer =
scaled_buffer->GetMappedFrameBuffer(mapped_type);
RTC_DCHECK(mapped_scaled_buffer) << "Unable to map the scaled buffer.";
if (!mapped_scaled_buffer) {
RTC_LOG(LS_ERROR) << "Failed to map scaled "
<< VideoFrameBufferTypeToString(scaled_buffer->type())
<< " image to "
<< VideoFrameBufferTypeToString(mapped_buffer->type())
<< ". Can't encode frame.";
return {};
}
scaled_buffer = mapped_scaled_buffer;
}
if (!IsCompatibleVideoFrameBufferType(scaled_buffer->type(),
mapped_buffer->type())) {
RTC_LOG(LS_ERROR) << "When scaling "
<< VideoFrameBufferTypeToString(buffer_to_scale->type())
<< ", the image was unexpectedly converted to "
<< VideoFrameBufferTypeToString(scaled_buffer->type())
<< " instead of "
<< VideoFrameBufferTypeToString(mapped_buffer->type())
<< ". Can't encode frame.";
RTC_DCHECK_NOTREACHED()
<< "Scaled buffer type "
<< VideoFrameBufferTypeToString(scaled_buffer->type())
<< " is not compatible with mapped buffer type "
<< VideoFrameBufferTypeToString(mapped_buffer->type());
return {};
}
SetRawImagePlanes(&raw_images_[i], scaled_buffer.get());
prepared_buffers.push_back(scaled_buffer);
}
return prepared_buffers;
}
// static
LibvpxVp8Encoder::VariableFramerateExperiment
LibvpxVp8Encoder::ParseVariableFramerateConfig(std::string group_name) {
FieldTrialFlag disabled = FieldTrialFlag("Disabled");
FieldTrialParameter<double> framerate_limit("min_fps", 5.0);
FieldTrialParameter<int> qp("min_qp", 15);
FieldTrialParameter<int> undershoot_percentage("undershoot", 30);
ParseFieldTrial({&disabled, &framerate_limit, &qp, &undershoot_percentage},
field_trial::FindFullName(group_name));
VariableFramerateExperiment config;
config.enabled = !disabled.Get();
config.framerate_limit = framerate_limit.Get();
config.steady_state_qp = qp.Get();
config.steady_state_undershoot_percentage = undershoot_percentage.Get();
return config;
}
} // namespace webrtc