mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-17 15:47:53 +01:00

This class adds logic for aligning color space of a test video compared to a reference video. If there is a color space mismatch, it typically does not have much impact on human perception, but it has a big impact on PSNR and SSIM calculations. For example, aligning a test run with VP8 improves PSNR and SSIM from: Average PSNR: 29.142818, average SSIM: 0.946026 to: Average PSNR: 38.146229, average SSIM: 0.965388. The optiomal color transformation between the two videos were: 0.86 0.01 0.00 14.37 0.00 0.88 0.00 15.32 0.00 0.00 0.88 15.74 which is converting YUV full range to YUV limited range. There is already a CL out for fixing this discrepancy here: https://webrtc-review.googlesource.com/c/src/+/94543 After that, hopefully there is no color space mismatch when saving the raw YUV values. It's good that the video quality tool is color space agnostic anyway, and can compensate for differences when the test video is obtained by e.g. filming a physical device screen. Also, the linear least square logic will be used for compensating geometric distorisions in a follow-up CL. Bug: webrtc:9642 Change-Id: I499713960a0544d8e45c5d09886e68ec829b28a7 Reviewed-on: https://webrtc-review.googlesource.com/c/95950 Reviewed-by: Sami Kalliomäki <sakal@webrtc.org> Reviewed-by: Patrik Höglund <phoglund@webrtc.org> Commit-Queue: Magnus Jedvert <magjed@webrtc.org> Cr-Commit-Position: refs/heads/master@{#25193}
200 lines
7.1 KiB
C++
200 lines
7.1 KiB
C++
/*
|
|
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "rtc_tools/frame_analyzer/linear_least_squares.h"
|
|
|
|
#include <numeric>
|
|
#include <utility>
|
|
|
|
#include "rtc_base/checks.h"
|
|
#include "rtc_base/logging.h"
|
|
|
|
namespace webrtc {
|
|
namespace test {
|
|
|
|
template <class T>
|
|
using Matrix = std::valarray<std::valarray<T>>;
|
|
|
|
namespace {
|
|
|
|
template <typename R, typename T>
|
|
R DotProduct(const std::valarray<T>& a, const std::valarray<T>& b) {
|
|
RTC_CHECK_EQ(a.size(), b.size());
|
|
return std::inner_product(std::begin(a), std::end(a), std::begin(b), R(0));
|
|
}
|
|
|
|
// Calculates a^T * b.
|
|
template <typename R, typename T>
|
|
Matrix<R> MatrixMultiply(const Matrix<T>& a, const Matrix<T>& b) {
|
|
Matrix<R> result(std::valarray<R>(a.size()), b.size());
|
|
for (size_t i = 0; i < a.size(); ++i) {
|
|
for (size_t j = 0; j < b.size(); ++j)
|
|
result[j][i] = DotProduct<R>(a[i], b[j]);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
template <typename T>
|
|
Matrix<T> Transpose(const Matrix<T>& matrix) {
|
|
if (matrix.size() == 0)
|
|
return Matrix<T>();
|
|
const size_t rows = matrix.size();
|
|
const size_t columns = matrix[0].size();
|
|
Matrix<T> result(std::valarray<T>(rows), columns);
|
|
|
|
for (size_t i = 0; i < rows; ++i) {
|
|
for (size_t j = 0; j < columns; ++j)
|
|
result[j][i] = matrix[i][j];
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
// Convert valarray from type T to type R.
|
|
template <typename R, typename T>
|
|
std::valarray<R> ConvertTo(const std::valarray<T>& v) {
|
|
std::valarray<R> result(v.size());
|
|
for (size_t i = 0; i < v.size(); ++i)
|
|
result[i] = static_cast<R>(v[i]);
|
|
return result;
|
|
}
|
|
|
|
// Convert valarray Matrix from type T to type R.
|
|
template <typename R, typename T>
|
|
Matrix<R> ConvertTo(const Matrix<T>& mat) {
|
|
Matrix<R> result(mat.size());
|
|
for (size_t i = 0; i < mat.size(); ++i)
|
|
result[i] = ConvertTo<R>(mat[i]);
|
|
return result;
|
|
}
|
|
|
|
// Convert from valarray Matrix back to the more conventional std::vector.
|
|
template <typename T>
|
|
std::vector<std::vector<T>> ToVectorMatrix(const Matrix<T>& m) {
|
|
std::vector<std::vector<T>> result;
|
|
for (const std::valarray<T>& v : m)
|
|
result.emplace_back(std::begin(v), std::end(v));
|
|
return result;
|
|
}
|
|
|
|
// Create a valarray Matrix from a conventional std::vector.
|
|
template <typename T>
|
|
Matrix<T> FromVectorMatrix(const std::vector<std::vector<T>>& mat) {
|
|
Matrix<T> result(mat.size());
|
|
for (size_t i = 0; i < mat.size(); ++i)
|
|
result[i] = std::valarray<T>(mat[i].data(), mat[i].size());
|
|
return result;
|
|
}
|
|
|
|
// Returns |matrix_to_invert|^-1 * |right_hand_matrix|. |matrix_to_invert| must
|
|
// have square size.
|
|
Matrix<double> GaussianElimination(Matrix<double> matrix_to_invert,
|
|
Matrix<double> right_hand_matrix) {
|
|
// |n| is the width/height of |matrix_to_invert|.
|
|
const size_t n = matrix_to_invert.size();
|
|
// Make sure |matrix_to_invert| has square size.
|
|
for (const std::valarray<double>& column : matrix_to_invert)
|
|
RTC_CHECK_EQ(n, column.size());
|
|
// Make sure |right_hand_matrix| has correct size.
|
|
for (const std::valarray<double>& column : right_hand_matrix)
|
|
RTC_CHECK_EQ(n, column.size());
|
|
|
|
// Transpose the matrices before and after so that we can perform Gaussian
|
|
// elimination on the columns instead of the rows, since that is easier with
|
|
// our representation.
|
|
matrix_to_invert = Transpose(matrix_to_invert);
|
|
right_hand_matrix = Transpose(right_hand_matrix);
|
|
|
|
// Loop over the diagonal of |matrix_to_invert| and perform column reduction.
|
|
// Column reduction is a sequence of elementary column operations that is
|
|
// performed on both |matrix_to_invert| and |right_hand_matrix| until
|
|
// |matrix_to_invert| has been transformed to the identity matrix.
|
|
for (size_t diagonal_index = 0; diagonal_index < n; ++diagonal_index) {
|
|
// Make sure the diagonal element has the highest absolute value by
|
|
// swapping columns if necessary.
|
|
for (size_t column = diagonal_index + 1; column < n; ++column) {
|
|
if (std::abs(matrix_to_invert[column][diagonal_index]) >
|
|
std::abs(matrix_to_invert[diagonal_index][diagonal_index])) {
|
|
std::swap(matrix_to_invert[column], matrix_to_invert[diagonal_index]);
|
|
std::swap(right_hand_matrix[column], right_hand_matrix[diagonal_index]);
|
|
}
|
|
}
|
|
|
|
// Reduce the diagonal element to be 1, by dividing the column with that
|
|
// value. If the diagonal element is 0, it means the system of equations has
|
|
// many solutions, and in that case we will return an arbitrary solution.
|
|
if (matrix_to_invert[diagonal_index][diagonal_index] == 0.0) {
|
|
RTC_LOG(LS_WARNING) << "Matrix is not invertible, ignoring.";
|
|
continue;
|
|
}
|
|
const double diagonal_element =
|
|
matrix_to_invert[diagonal_index][diagonal_index];
|
|
matrix_to_invert[diagonal_index] /= diagonal_element;
|
|
right_hand_matrix[diagonal_index] /= diagonal_element;
|
|
|
|
// Eliminate the other entries in row |diagonal_index| by making them zero.
|
|
for (size_t column = 0; column < n; ++column) {
|
|
if (column == diagonal_index)
|
|
continue;
|
|
const double row_element = matrix_to_invert[column][diagonal_index];
|
|
matrix_to_invert[column] -=
|
|
row_element * matrix_to_invert[diagonal_index];
|
|
right_hand_matrix[column] -=
|
|
row_element * right_hand_matrix[diagonal_index];
|
|
}
|
|
}
|
|
|
|
// Transpose the result before returning it, explained in comment above.
|
|
return Transpose(right_hand_matrix);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
IncrementalLinearLeastSquares::IncrementalLinearLeastSquares() = default;
|
|
IncrementalLinearLeastSquares::~IncrementalLinearLeastSquares() = default;
|
|
|
|
void IncrementalLinearLeastSquares::AddObservations(
|
|
const std::vector<std::vector<uint8_t>>& x,
|
|
const std::vector<std::vector<uint8_t>>& y) {
|
|
if (x.empty() || y.empty())
|
|
return;
|
|
// Make sure all columns are the same size.
|
|
const size_t n = x[0].size();
|
|
for (const std::vector<uint8_t>& column : x)
|
|
RTC_CHECK_EQ(n, column.size());
|
|
for (const std::vector<uint8_t>& column : y)
|
|
RTC_CHECK_EQ(n, column.size());
|
|
|
|
// We will multiply the uint8_t values together, so we need to expand to a
|
|
// type that can safely store those values, i.e. uint16_t.
|
|
const Matrix<uint16_t> unpacked_x = ConvertTo<uint16_t>(FromVectorMatrix(x));
|
|
const Matrix<uint16_t> unpacked_y = ConvertTo<uint16_t>(FromVectorMatrix(y));
|
|
|
|
const Matrix<uint64_t> xx = MatrixMultiply<uint64_t>(unpacked_x, unpacked_x);
|
|
const Matrix<uint64_t> xy = MatrixMultiply<uint64_t>(unpacked_x, unpacked_y);
|
|
if (sum_xx && sum_xy) {
|
|
*sum_xx += xx;
|
|
*sum_xy += xy;
|
|
} else {
|
|
sum_xx = xx;
|
|
sum_xy = xy;
|
|
}
|
|
}
|
|
|
|
std::vector<std::vector<double>>
|
|
IncrementalLinearLeastSquares::GetBestSolution() const {
|
|
RTC_CHECK(sum_xx && sum_xy) << "No observations have been added";
|
|
return ToVectorMatrix(GaussianElimination(ConvertTo<double>(*sum_xx),
|
|
ConvertTo<double>(*sum_xy)));
|
|
}
|
|
|
|
} // namespace test
|
|
} // namespace webrtc
|