mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-17 15:47:53 +01:00

The dominant nearend detector uses the residual echo spectrum for determining whether in nearend state. The residual echo spectrum in computed using the ERLE. To reduce the risk of echo leaks in the suppressor, the ERLE is capped. While minimizing echo leaks, the capping of the ERLE can affect the dominant nearend classification negatively as the residual echo spectrum is often over estimated. This change enables the dominant nearend detector to use a residual echo spectrum computed with a virtually non-capped ERLE. This ERLE is only used for dominant nearend detection and leads to increased transparency. The feature is currently disabled by default and can be enabled with the field trial "WebRTC-Aec3UseUnboundedEchoSpectrum". Bug: webrtc:12870 Change-Id: Icb675c6f5d42ab9286e623b5fb38424d5c9cbee4 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/221920 Reviewed-by: Jesus de Vicente Pena <devicentepena@webrtc.org> Commit-Queue: Gustaf Ullberg <gustaf@webrtc.org> Cr-Commit-Position: refs/heads/master@{#34270}
292 lines
12 KiB
C++
292 lines
12 KiB
C++
/*
|
|
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/audio_processing/aec3/erle_estimator.h"
|
|
|
|
#include <cmath>
|
|
|
|
#include "api/array_view.h"
|
|
#include "modules/audio_processing/aec3/render_delay_buffer.h"
|
|
#include "modules/audio_processing/aec3/spectrum_buffer.h"
|
|
#include "rtc_base/random.h"
|
|
#include "rtc_base/strings/string_builder.h"
|
|
#include "test/gtest.h"
|
|
|
|
namespace webrtc {
|
|
|
|
namespace {
|
|
constexpr int kLowFrequencyLimit = kFftLengthBy2 / 2;
|
|
constexpr float kTrueErle = 10.f;
|
|
constexpr float kTrueErleOnsets = 1.0f;
|
|
constexpr float kEchoPathGain = 3.f;
|
|
|
|
void VerifyErleBands(
|
|
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> erle,
|
|
float reference_lf,
|
|
float reference_hf) {
|
|
for (size_t ch = 0; ch < erle.size(); ++ch) {
|
|
std::for_each(
|
|
erle[ch].begin(), erle[ch].begin() + kLowFrequencyLimit,
|
|
[reference_lf](float a) { EXPECT_NEAR(reference_lf, a, 0.001); });
|
|
std::for_each(
|
|
erle[ch].begin() + kLowFrequencyLimit, erle[ch].end(),
|
|
[reference_hf](float a) { EXPECT_NEAR(reference_hf, a, 0.001); });
|
|
}
|
|
}
|
|
|
|
void VerifyErle(
|
|
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> erle,
|
|
float erle_time_domain,
|
|
float reference_lf,
|
|
float reference_hf) {
|
|
VerifyErleBands(erle, reference_lf, reference_hf);
|
|
EXPECT_NEAR(kTrueErle, erle_time_domain, 0.5);
|
|
}
|
|
|
|
void VerifyErleGreaterOrEqual(
|
|
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> erle1,
|
|
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> erle2) {
|
|
for (size_t ch = 0; ch < erle1.size(); ++ch) {
|
|
for (size_t i = 0; i < kFftLengthBy2Plus1; ++i) {
|
|
EXPECT_GE(erle1[ch][i], erle2[ch][i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
void FormFarendTimeFrame(std::vector<std::vector<std::vector<float>>>* x) {
|
|
const std::array<float, kBlockSize> frame = {
|
|
7459.88, 17209.6, 17383, 20768.9, 16816.7, 18386.3, 4492.83, 9675.85,
|
|
6665.52, 14808.6, 9342.3, 7483.28, 19261.7, 4145.98, 1622.18, 13475.2,
|
|
7166.32, 6856.61, 21937, 7263.14, 9569.07, 14919, 8413.32, 7551.89,
|
|
7848.65, 6011.27, 13080.6, 15865.2, 12656, 17459.6, 4263.93, 4503.03,
|
|
9311.79, 21095.8, 12657.9, 13906.6, 19267.2, 11338.1, 16828.9, 11501.6,
|
|
11405, 15031.4, 14541.6, 19765.5, 18346.3, 19350.2, 3157.47, 18095.8,
|
|
1743.68, 21328.2, 19727.5, 7295.16, 10332.4, 11055.5, 20107.4, 14708.4,
|
|
12416.2, 16434, 2454.69, 9840.8, 6867.23, 1615.75, 6059.9, 8394.19};
|
|
for (size_t band = 0; band < x->size(); ++band) {
|
|
for (size_t channel = 0; channel < (*x)[band].size(); ++channel) {
|
|
RTC_DCHECK_GE((*x)[band][channel].size(), frame.size());
|
|
std::copy(frame.begin(), frame.end(), (*x)[band][channel].begin());
|
|
}
|
|
}
|
|
}
|
|
|
|
void FormFarendFrame(const RenderBuffer& render_buffer,
|
|
float erle,
|
|
std::array<float, kFftLengthBy2Plus1>* X2,
|
|
rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>> E2,
|
|
rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>> Y2) {
|
|
const auto& spectrum_buffer = render_buffer.GetSpectrumBuffer();
|
|
const int num_render_channels = spectrum_buffer.buffer[0].size();
|
|
const int num_capture_channels = Y2.size();
|
|
|
|
X2->fill(0.f);
|
|
for (int ch = 0; ch < num_render_channels; ++ch) {
|
|
for (size_t k = 0; k < kFftLengthBy2Plus1; ++k) {
|
|
(*X2)[k] += spectrum_buffer.buffer[spectrum_buffer.write][ch][k] /
|
|
num_render_channels;
|
|
}
|
|
}
|
|
|
|
for (int ch = 0; ch < num_capture_channels; ++ch) {
|
|
std::transform(X2->begin(), X2->end(), Y2[ch].begin(),
|
|
[](float a) { return a * kEchoPathGain * kEchoPathGain; });
|
|
std::transform(Y2[ch].begin(), Y2[ch].end(), E2[ch].begin(),
|
|
[erle](float a) { return a / erle; });
|
|
}
|
|
}
|
|
|
|
void FormNearendFrame(
|
|
std::vector<std::vector<std::vector<float>>>* x,
|
|
std::array<float, kFftLengthBy2Plus1>* X2,
|
|
rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>> E2,
|
|
rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>> Y2) {
|
|
for (size_t band = 0; band < x->size(); ++band) {
|
|
for (size_t ch = 0; ch < (*x)[band].size(); ++ch) {
|
|
std::fill((*x)[band][ch].begin(), (*x)[band][ch].end(), 0.f);
|
|
}
|
|
}
|
|
|
|
X2->fill(0.f);
|
|
for (size_t ch = 0; ch < Y2.size(); ++ch) {
|
|
Y2[ch].fill(500.f * 1000.f * 1000.f);
|
|
E2[ch].fill(Y2[ch][0]);
|
|
}
|
|
}
|
|
|
|
void GetFilterFreq(
|
|
size_t delay_headroom_samples,
|
|
rtc::ArrayView<std::vector<std::array<float, kFftLengthBy2Plus1>>>
|
|
filter_frequency_response) {
|
|
const size_t delay_headroom_blocks = delay_headroom_samples / kBlockSize;
|
|
for (size_t ch = 0; ch < filter_frequency_response[0].size(); ++ch) {
|
|
for (auto& block_freq_resp : filter_frequency_response) {
|
|
block_freq_resp[ch].fill(0.f);
|
|
}
|
|
|
|
for (size_t k = 0; k < kFftLengthBy2Plus1; ++k) {
|
|
filter_frequency_response[delay_headroom_blocks][ch][k] = kEchoPathGain;
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
class ErleEstimatorMultiChannel
|
|
: public ::testing::Test,
|
|
public ::testing::WithParamInterface<std::tuple<size_t, size_t>> {};
|
|
|
|
INSTANTIATE_TEST_SUITE_P(MultiChannel,
|
|
ErleEstimatorMultiChannel,
|
|
::testing::Combine(::testing::Values(1, 2, 4, 8),
|
|
::testing::Values(1, 2, 8)));
|
|
|
|
TEST_P(ErleEstimatorMultiChannel, VerifyErleIncreaseAndHold) {
|
|
const size_t num_render_channels = std::get<0>(GetParam());
|
|
const size_t num_capture_channels = std::get<1>(GetParam());
|
|
constexpr int kSampleRateHz = 48000;
|
|
constexpr size_t kNumBands = NumBandsForRate(kSampleRateHz);
|
|
|
|
std::array<float, kFftLengthBy2Plus1> X2;
|
|
std::vector<std::array<float, kFftLengthBy2Plus1>> E2(num_capture_channels);
|
|
std::vector<std::array<float, kFftLengthBy2Plus1>> Y2(num_capture_channels);
|
|
std::vector<bool> converged_filters(num_capture_channels, true);
|
|
|
|
EchoCanceller3Config config;
|
|
config.erle.onset_detection = true;
|
|
|
|
std::vector<std::vector<std::vector<float>>> x(
|
|
kNumBands, std::vector<std::vector<float>>(
|
|
num_render_channels, std::vector<float>(kBlockSize, 0.f)));
|
|
std::vector<std::vector<std::array<float, kFftLengthBy2Plus1>>>
|
|
filter_frequency_response(
|
|
config.filter.refined.length_blocks,
|
|
std::vector<std::array<float, kFftLengthBy2Plus1>>(
|
|
num_capture_channels));
|
|
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
|
|
RenderDelayBuffer::Create(config, kSampleRateHz, num_render_channels));
|
|
|
|
GetFilterFreq(config.delay.delay_headroom_samples, filter_frequency_response);
|
|
|
|
ErleEstimator estimator(0, config, num_capture_channels);
|
|
|
|
FormFarendTimeFrame(&x);
|
|
render_delay_buffer->Insert(x);
|
|
render_delay_buffer->PrepareCaptureProcessing();
|
|
// Verifies that the ERLE estimate is properly increased to higher values.
|
|
FormFarendFrame(*render_delay_buffer->GetRenderBuffer(), kTrueErle, &X2, E2,
|
|
Y2);
|
|
for (size_t k = 0; k < 1000; ++k) {
|
|
render_delay_buffer->Insert(x);
|
|
render_delay_buffer->PrepareCaptureProcessing();
|
|
estimator.Update(*render_delay_buffer->GetRenderBuffer(),
|
|
filter_frequency_response, X2, Y2, E2, converged_filters);
|
|
}
|
|
VerifyErle(estimator.Erle(/*onset_compensated=*/true),
|
|
std::pow(2.f, estimator.FullbandErleLog2()), config.erle.max_l,
|
|
config.erle.max_h);
|
|
VerifyErleGreaterOrEqual(estimator.Erle(/*onset_compensated=*/false),
|
|
estimator.Erle(/*onset_compensated=*/true));
|
|
VerifyErleGreaterOrEqual(estimator.ErleUnbounded(),
|
|
estimator.Erle(/*onset_compensated=*/false));
|
|
|
|
FormNearendFrame(&x, &X2, E2, Y2);
|
|
// Verifies that the ERLE is not immediately decreased during nearend
|
|
// activity.
|
|
for (size_t k = 0; k < 50; ++k) {
|
|
render_delay_buffer->Insert(x);
|
|
render_delay_buffer->PrepareCaptureProcessing();
|
|
estimator.Update(*render_delay_buffer->GetRenderBuffer(),
|
|
filter_frequency_response, X2, Y2, E2, converged_filters);
|
|
}
|
|
VerifyErle(estimator.Erle(/*onset_compensated=*/true),
|
|
std::pow(2.f, estimator.FullbandErleLog2()), config.erle.max_l,
|
|
config.erle.max_h);
|
|
VerifyErleGreaterOrEqual(estimator.Erle(/*onset_compensated=*/false),
|
|
estimator.Erle(/*onset_compensated=*/true));
|
|
VerifyErleGreaterOrEqual(estimator.ErleUnbounded(),
|
|
estimator.Erle(/*onset_compensated=*/false));
|
|
}
|
|
|
|
TEST_P(ErleEstimatorMultiChannel, VerifyErleTrackingOnOnsets) {
|
|
const size_t num_render_channels = std::get<0>(GetParam());
|
|
const size_t num_capture_channels = std::get<1>(GetParam());
|
|
constexpr int kSampleRateHz = 48000;
|
|
constexpr size_t kNumBands = NumBandsForRate(kSampleRateHz);
|
|
|
|
std::array<float, kFftLengthBy2Plus1> X2;
|
|
std::vector<std::array<float, kFftLengthBy2Plus1>> E2(num_capture_channels);
|
|
std::vector<std::array<float, kFftLengthBy2Plus1>> Y2(num_capture_channels);
|
|
std::vector<bool> converged_filters(num_capture_channels, true);
|
|
EchoCanceller3Config config;
|
|
config.erle.onset_detection = true;
|
|
std::vector<std::vector<std::vector<float>>> x(
|
|
kNumBands, std::vector<std::vector<float>>(
|
|
num_render_channels, std::vector<float>(kBlockSize, 0.f)));
|
|
std::vector<std::vector<std::array<float, kFftLengthBy2Plus1>>>
|
|
filter_frequency_response(
|
|
config.filter.refined.length_blocks,
|
|
std::vector<std::array<float, kFftLengthBy2Plus1>>(
|
|
num_capture_channels));
|
|
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
|
|
RenderDelayBuffer::Create(config, kSampleRateHz, num_render_channels));
|
|
|
|
GetFilterFreq(config.delay.delay_headroom_samples, filter_frequency_response);
|
|
|
|
ErleEstimator estimator(/*startup_phase_length_blocks=*/0, config,
|
|
num_capture_channels);
|
|
|
|
FormFarendTimeFrame(&x);
|
|
render_delay_buffer->Insert(x);
|
|
render_delay_buffer->PrepareCaptureProcessing();
|
|
|
|
for (size_t burst = 0; burst < 20; ++burst) {
|
|
FormFarendFrame(*render_delay_buffer->GetRenderBuffer(), kTrueErleOnsets,
|
|
&X2, E2, Y2);
|
|
for (size_t k = 0; k < 10; ++k) {
|
|
render_delay_buffer->Insert(x);
|
|
render_delay_buffer->PrepareCaptureProcessing();
|
|
estimator.Update(*render_delay_buffer->GetRenderBuffer(),
|
|
filter_frequency_response, X2, Y2, E2,
|
|
converged_filters);
|
|
}
|
|
FormFarendFrame(*render_delay_buffer->GetRenderBuffer(), kTrueErle, &X2, E2,
|
|
Y2);
|
|
for (size_t k = 0; k < 1000; ++k) {
|
|
render_delay_buffer->Insert(x);
|
|
render_delay_buffer->PrepareCaptureProcessing();
|
|
estimator.Update(*render_delay_buffer->GetRenderBuffer(),
|
|
filter_frequency_response, X2, Y2, E2,
|
|
converged_filters);
|
|
}
|
|
FormNearendFrame(&x, &X2, E2, Y2);
|
|
for (size_t k = 0; k < 300; ++k) {
|
|
render_delay_buffer->Insert(x);
|
|
render_delay_buffer->PrepareCaptureProcessing();
|
|
estimator.Update(*render_delay_buffer->GetRenderBuffer(),
|
|
filter_frequency_response, X2, Y2, E2,
|
|
converged_filters);
|
|
}
|
|
}
|
|
VerifyErleBands(estimator.ErleDuringOnsets(), config.erle.min,
|
|
config.erle.min);
|
|
FormNearendFrame(&x, &X2, E2, Y2);
|
|
for (size_t k = 0; k < 1000; k++) {
|
|
estimator.Update(*render_delay_buffer->GetRenderBuffer(),
|
|
filter_frequency_response, X2, Y2, E2, converged_filters);
|
|
}
|
|
// Verifies that during ne activity, Erle converges to the Erle for
|
|
// onsets.
|
|
VerifyErle(estimator.Erle(/*onset_compensated=*/true),
|
|
std::pow(2.f, estimator.FullbandErleLog2()), config.erle.min,
|
|
config.erle.min);
|
|
}
|
|
|
|
} // namespace webrtc
|