mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-19 08:37:54 +01:00

The dominant nearend detector uses the residual echo spectrum for determining whether in nearend state. The residual echo spectrum in computed using the ERLE. To reduce the risk of echo leaks in the suppressor, the ERLE is capped. While minimizing echo leaks, the capping of the ERLE can affect the dominant nearend classification negatively as the residual echo spectrum is often over estimated. This change enables the dominant nearend detector to use a residual echo spectrum computed with a virtually non-capped ERLE. This ERLE is only used for dominant nearend detection and leads to increased transparency. The feature is currently disabled by default and can be enabled with the field trial "WebRTC-Aec3UseUnboundedEchoSpectrum". Bug: webrtc:12870 Change-Id: Icb675c6f5d42ab9286e623b5fb38424d5c9cbee4 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/221920 Reviewed-by: Jesus de Vicente Pena <devicentepena@webrtc.org> Commit-Queue: Gustaf Ullberg <gustaf@webrtc.org> Cr-Commit-Position: refs/heads/master@{#34270}
472 lines
18 KiB
C++
472 lines
18 KiB
C++
/*
|
|
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/audio_processing/aec3/suppression_gain.h"
|
|
|
|
#include <math.h>
|
|
#include <stddef.h>
|
|
|
|
#include <algorithm>
|
|
#include <numeric>
|
|
|
|
#include "modules/audio_processing/aec3/dominant_nearend_detector.h"
|
|
#include "modules/audio_processing/aec3/moving_average.h"
|
|
#include "modules/audio_processing/aec3/subband_nearend_detector.h"
|
|
#include "modules/audio_processing/aec3/vector_math.h"
|
|
#include "modules/audio_processing/logging/apm_data_dumper.h"
|
|
#include "rtc_base/atomic_ops.h"
|
|
#include "rtc_base/checks.h"
|
|
#include "system_wrappers/include/field_trial.h"
|
|
|
|
namespace webrtc {
|
|
namespace {
|
|
|
|
bool UseUnboundedEchoSpectrum() {
|
|
return field_trial::IsEnabled("WebRTC-Aec3UseUnboundedEchoSpectrum");
|
|
}
|
|
|
|
void LimitLowFrequencyGains(std::array<float, kFftLengthBy2Plus1>* gain) {
|
|
// Limit the low frequency gains to avoid the impact of the high-pass filter
|
|
// on the lower-frequency gain influencing the overall achieved gain.
|
|
(*gain)[0] = (*gain)[1] = std::min((*gain)[1], (*gain)[2]);
|
|
}
|
|
|
|
void LimitHighFrequencyGains(bool conservative_hf_suppression,
|
|
std::array<float, kFftLengthBy2Plus1>* gain) {
|
|
// Limit the high frequency gains to avoid echo leakage due to an imperfect
|
|
// filter.
|
|
constexpr size_t kFirstBandToLimit = (64 * 2000) / 8000;
|
|
const float min_upper_gain = (*gain)[kFirstBandToLimit];
|
|
std::for_each(
|
|
gain->begin() + kFirstBandToLimit + 1, gain->end(),
|
|
[min_upper_gain](float& a) { a = std::min(a, min_upper_gain); });
|
|
(*gain)[kFftLengthBy2] = (*gain)[kFftLengthBy2Minus1];
|
|
|
|
if (conservative_hf_suppression) {
|
|
// Limits the gain in the frequencies for which the adaptive filter has not
|
|
// converged.
|
|
// TODO(peah): Make adaptive to take the actual filter error into account.
|
|
constexpr size_t kUpperAccurateBandPlus1 = 29;
|
|
|
|
constexpr float oneByBandsInSum =
|
|
1 / static_cast<float>(kUpperAccurateBandPlus1 - 20);
|
|
const float hf_gain_bound =
|
|
std::accumulate(gain->begin() + 20,
|
|
gain->begin() + kUpperAccurateBandPlus1, 0.f) *
|
|
oneByBandsInSum;
|
|
|
|
std::for_each(
|
|
gain->begin() + kUpperAccurateBandPlus1, gain->end(),
|
|
[hf_gain_bound](float& a) { a = std::min(a, hf_gain_bound); });
|
|
}
|
|
}
|
|
|
|
// Scales the echo according to assessed audibility at the other end.
|
|
void WeightEchoForAudibility(const EchoCanceller3Config& config,
|
|
rtc::ArrayView<const float> echo,
|
|
rtc::ArrayView<float> weighted_echo) {
|
|
RTC_DCHECK_EQ(kFftLengthBy2Plus1, echo.size());
|
|
RTC_DCHECK_EQ(kFftLengthBy2Plus1, weighted_echo.size());
|
|
|
|
auto weigh = [](float threshold, float normalizer, size_t begin, size_t end,
|
|
rtc::ArrayView<const float> echo,
|
|
rtc::ArrayView<float> weighted_echo) {
|
|
for (size_t k = begin; k < end; ++k) {
|
|
if (echo[k] < threshold) {
|
|
float tmp = (threshold - echo[k]) * normalizer;
|
|
weighted_echo[k] = echo[k] * std::max(0.f, 1.f - tmp * tmp);
|
|
} else {
|
|
weighted_echo[k] = echo[k];
|
|
}
|
|
}
|
|
};
|
|
|
|
float threshold = config.echo_audibility.floor_power *
|
|
config.echo_audibility.audibility_threshold_lf;
|
|
float normalizer = 1.f / (threshold - config.echo_audibility.floor_power);
|
|
weigh(threshold, normalizer, 0, 3, echo, weighted_echo);
|
|
|
|
threshold = config.echo_audibility.floor_power *
|
|
config.echo_audibility.audibility_threshold_mf;
|
|
normalizer = 1.f / (threshold - config.echo_audibility.floor_power);
|
|
weigh(threshold, normalizer, 3, 7, echo, weighted_echo);
|
|
|
|
threshold = config.echo_audibility.floor_power *
|
|
config.echo_audibility.audibility_threshold_hf;
|
|
normalizer = 1.f / (threshold - config.echo_audibility.floor_power);
|
|
weigh(threshold, normalizer, 7, kFftLengthBy2Plus1, echo, weighted_echo);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
int SuppressionGain::instance_count_ = 0;
|
|
|
|
float SuppressionGain::UpperBandsGain(
|
|
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> echo_spectrum,
|
|
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>>
|
|
comfort_noise_spectrum,
|
|
const absl::optional<int>& narrow_peak_band,
|
|
bool saturated_echo,
|
|
const std::vector<std::vector<std::vector<float>>>& render,
|
|
const std::array<float, kFftLengthBy2Plus1>& low_band_gain) const {
|
|
RTC_DCHECK_LT(0, render.size());
|
|
if (render.size() == 1) {
|
|
return 1.f;
|
|
}
|
|
const size_t num_render_channels = render[0].size();
|
|
|
|
if (narrow_peak_band &&
|
|
(*narrow_peak_band > static_cast<int>(kFftLengthBy2Plus1 - 10))) {
|
|
return 0.001f;
|
|
}
|
|
|
|
constexpr size_t kLowBandGainLimit = kFftLengthBy2 / 2;
|
|
const float gain_below_8_khz = *std::min_element(
|
|
low_band_gain.begin() + kLowBandGainLimit, low_band_gain.end());
|
|
|
|
// Always attenuate the upper bands when there is saturated echo.
|
|
if (saturated_echo) {
|
|
return std::min(0.001f, gain_below_8_khz);
|
|
}
|
|
|
|
// Compute the upper and lower band energies.
|
|
const auto sum_of_squares = [](float a, float b) { return a + b * b; };
|
|
float low_band_energy = 0.f;
|
|
for (size_t ch = 0; ch < num_render_channels; ++ch) {
|
|
const float channel_energy = std::accumulate(
|
|
render[0][0].begin(), render[0][0].end(), 0.f, sum_of_squares);
|
|
low_band_energy = std::max(low_band_energy, channel_energy);
|
|
}
|
|
float high_band_energy = 0.f;
|
|
for (size_t k = 1; k < render.size(); ++k) {
|
|
for (size_t ch = 0; ch < num_render_channels; ++ch) {
|
|
const float energy = std::accumulate(
|
|
render[k][ch].begin(), render[k][ch].end(), 0.f, sum_of_squares);
|
|
high_band_energy = std::max(high_band_energy, energy);
|
|
}
|
|
}
|
|
|
|
// If there is more power in the lower frequencies than the upper frequencies,
|
|
// or if the power in upper frequencies is low, do not bound the gain in the
|
|
// upper bands.
|
|
float anti_howling_gain;
|
|
const float activation_threshold =
|
|
kBlockSize * config_.suppressor.high_bands_suppression
|
|
.anti_howling_activation_threshold;
|
|
if (high_band_energy < std::max(low_band_energy, activation_threshold)) {
|
|
anti_howling_gain = 1.f;
|
|
} else {
|
|
// In all other cases, bound the gain for upper frequencies.
|
|
RTC_DCHECK_LE(low_band_energy, high_band_energy);
|
|
RTC_DCHECK_NE(0.f, high_band_energy);
|
|
anti_howling_gain =
|
|
config_.suppressor.high_bands_suppression.anti_howling_gain *
|
|
sqrtf(low_band_energy / high_band_energy);
|
|
}
|
|
|
|
float gain_bound = 1.f;
|
|
if (!dominant_nearend_detector_->IsNearendState()) {
|
|
// Bound the upper gain during significant echo activity.
|
|
const auto& cfg = config_.suppressor.high_bands_suppression;
|
|
auto low_frequency_energy = [](rtc::ArrayView<const float> spectrum) {
|
|
RTC_DCHECK_LE(16, spectrum.size());
|
|
return std::accumulate(spectrum.begin() + 1, spectrum.begin() + 16, 0.f);
|
|
};
|
|
for (size_t ch = 0; ch < num_capture_channels_; ++ch) {
|
|
const float echo_sum = low_frequency_energy(echo_spectrum[ch]);
|
|
const float noise_sum = low_frequency_energy(comfort_noise_spectrum[ch]);
|
|
if (echo_sum > cfg.enr_threshold * noise_sum) {
|
|
gain_bound = cfg.max_gain_during_echo;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Choose the gain as the minimum of the lower and upper gains.
|
|
return std::min(std::min(gain_below_8_khz, anti_howling_gain), gain_bound);
|
|
}
|
|
|
|
// Computes the gain to reduce the echo to a non audible level.
|
|
void SuppressionGain::GainToNoAudibleEcho(
|
|
const std::array<float, kFftLengthBy2Plus1>& nearend,
|
|
const std::array<float, kFftLengthBy2Plus1>& echo,
|
|
const std::array<float, kFftLengthBy2Plus1>& masker,
|
|
std::array<float, kFftLengthBy2Plus1>* gain) const {
|
|
const auto& p = dominant_nearend_detector_->IsNearendState() ? nearend_params_
|
|
: normal_params_;
|
|
for (size_t k = 0; k < gain->size(); ++k) {
|
|
float enr = echo[k] / (nearend[k] + 1.f); // Echo-to-nearend ratio.
|
|
float emr = echo[k] / (masker[k] + 1.f); // Echo-to-masker (noise) ratio.
|
|
float g = 1.0f;
|
|
if (enr > p.enr_transparent_[k] && emr > p.emr_transparent_[k]) {
|
|
g = (p.enr_suppress_[k] - enr) /
|
|
(p.enr_suppress_[k] - p.enr_transparent_[k]);
|
|
g = std::max(g, p.emr_transparent_[k] / emr);
|
|
}
|
|
(*gain)[k] = g;
|
|
}
|
|
}
|
|
|
|
// Compute the minimum gain as the attenuating gain to put the signal just
|
|
// above the zero sample values.
|
|
void SuppressionGain::GetMinGain(
|
|
rtc::ArrayView<const float> weighted_residual_echo,
|
|
rtc::ArrayView<const float> last_nearend,
|
|
rtc::ArrayView<const float> last_echo,
|
|
bool low_noise_render,
|
|
bool saturated_echo,
|
|
rtc::ArrayView<float> min_gain) const {
|
|
if (!saturated_echo) {
|
|
const float min_echo_power =
|
|
low_noise_render ? config_.echo_audibility.low_render_limit
|
|
: config_.echo_audibility.normal_render_limit;
|
|
|
|
for (size_t k = 0; k < min_gain.size(); ++k) {
|
|
min_gain[k] = weighted_residual_echo[k] > 0.f
|
|
? min_echo_power / weighted_residual_echo[k]
|
|
: 1.f;
|
|
min_gain[k] = std::min(min_gain[k], 1.f);
|
|
}
|
|
|
|
if (!initial_state_ ||
|
|
config_.suppressor.lf_smoothing_during_initial_phase) {
|
|
const float& dec = dominant_nearend_detector_->IsNearendState()
|
|
? nearend_params_.max_dec_factor_lf
|
|
: normal_params_.max_dec_factor_lf;
|
|
|
|
for (int k = 0; k <= config_.suppressor.last_lf_smoothing_band; ++k) {
|
|
// Make sure the gains of the low frequencies do not decrease too
|
|
// quickly after strong nearend.
|
|
if (last_nearend[k] > last_echo[k] ||
|
|
k <= config_.suppressor.last_permanent_lf_smoothing_band) {
|
|
min_gain[k] = std::max(min_gain[k], last_gain_[k] * dec);
|
|
min_gain[k] = std::min(min_gain[k], 1.f);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
std::fill(min_gain.begin(), min_gain.end(), 0.f);
|
|
}
|
|
}
|
|
|
|
// Compute the maximum gain by limiting the gain increase from the previous
|
|
// gain.
|
|
void SuppressionGain::GetMaxGain(rtc::ArrayView<float> max_gain) const {
|
|
const auto& inc = dominant_nearend_detector_->IsNearendState()
|
|
? nearend_params_.max_inc_factor
|
|
: normal_params_.max_inc_factor;
|
|
const auto& floor = config_.suppressor.floor_first_increase;
|
|
for (size_t k = 0; k < max_gain.size(); ++k) {
|
|
max_gain[k] = std::min(std::max(last_gain_[k] * inc, floor), 1.f);
|
|
}
|
|
}
|
|
|
|
void SuppressionGain::LowerBandGain(
|
|
bool low_noise_render,
|
|
const AecState& aec_state,
|
|
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>>
|
|
suppressor_input,
|
|
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> residual_echo,
|
|
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> comfort_noise,
|
|
bool clock_drift,
|
|
std::array<float, kFftLengthBy2Plus1>* gain) {
|
|
gain->fill(1.f);
|
|
const bool saturated_echo = aec_state.SaturatedEcho();
|
|
std::array<float, kFftLengthBy2Plus1> max_gain;
|
|
GetMaxGain(max_gain);
|
|
|
|
for (size_t ch = 0; ch < num_capture_channels_; ++ch) {
|
|
std::array<float, kFftLengthBy2Plus1> G;
|
|
std::array<float, kFftLengthBy2Plus1> nearend;
|
|
nearend_smoothers_[ch].Average(suppressor_input[ch], nearend);
|
|
|
|
// Weight echo power in terms of audibility.
|
|
std::array<float, kFftLengthBy2Plus1> weighted_residual_echo;
|
|
WeightEchoForAudibility(config_, residual_echo[ch], weighted_residual_echo);
|
|
|
|
std::array<float, kFftLengthBy2Plus1> min_gain;
|
|
GetMinGain(weighted_residual_echo, last_nearend_[ch], last_echo_[ch],
|
|
low_noise_render, saturated_echo, min_gain);
|
|
|
|
GainToNoAudibleEcho(nearend, weighted_residual_echo, comfort_noise[0], &G);
|
|
|
|
// Clamp gains.
|
|
for (size_t k = 0; k < gain->size(); ++k) {
|
|
G[k] = std::max(std::min(G[k], max_gain[k]), min_gain[k]);
|
|
(*gain)[k] = std::min((*gain)[k], G[k]);
|
|
}
|
|
|
|
// Store data required for the gain computation of the next block.
|
|
std::copy(nearend.begin(), nearend.end(), last_nearend_[ch].begin());
|
|
std::copy(weighted_residual_echo.begin(), weighted_residual_echo.end(),
|
|
last_echo_[ch].begin());
|
|
}
|
|
|
|
LimitLowFrequencyGains(gain);
|
|
// Use conservative high-frequency gains during clock-drift or when not in
|
|
// dominant nearend.
|
|
if (!dominant_nearend_detector_->IsNearendState() || clock_drift ||
|
|
config_.suppressor.conservative_hf_suppression) {
|
|
LimitHighFrequencyGains(config_.suppressor.conservative_hf_suppression,
|
|
gain);
|
|
}
|
|
|
|
// Store computed gains.
|
|
std::copy(gain->begin(), gain->end(), last_gain_.begin());
|
|
|
|
// Transform gains to amplitude domain.
|
|
aec3::VectorMath(optimization_).Sqrt(*gain);
|
|
}
|
|
|
|
SuppressionGain::SuppressionGain(const EchoCanceller3Config& config,
|
|
Aec3Optimization optimization,
|
|
int sample_rate_hz,
|
|
size_t num_capture_channels)
|
|
: data_dumper_(
|
|
new ApmDataDumper(rtc::AtomicOps::Increment(&instance_count_))),
|
|
optimization_(optimization),
|
|
config_(config),
|
|
num_capture_channels_(num_capture_channels),
|
|
state_change_duration_blocks_(
|
|
static_cast<int>(config_.filter.config_change_duration_blocks)),
|
|
last_nearend_(num_capture_channels_, {0}),
|
|
last_echo_(num_capture_channels_, {0}),
|
|
nearend_smoothers_(
|
|
num_capture_channels_,
|
|
aec3::MovingAverage(kFftLengthBy2Plus1,
|
|
config.suppressor.nearend_average_blocks)),
|
|
nearend_params_(config_.suppressor.last_lf_band,
|
|
config_.suppressor.first_hf_band,
|
|
config_.suppressor.nearend_tuning),
|
|
normal_params_(config_.suppressor.last_lf_band,
|
|
config_.suppressor.first_hf_band,
|
|
config_.suppressor.normal_tuning),
|
|
use_unbounded_echo_spectrum_(UseUnboundedEchoSpectrum()) {
|
|
RTC_DCHECK_LT(0, state_change_duration_blocks_);
|
|
last_gain_.fill(1.f);
|
|
if (config_.suppressor.use_subband_nearend_detection) {
|
|
dominant_nearend_detector_ = std::make_unique<SubbandNearendDetector>(
|
|
config_.suppressor.subband_nearend_detection, num_capture_channels_);
|
|
} else {
|
|
dominant_nearend_detector_ = std::make_unique<DominantNearendDetector>(
|
|
config_.suppressor.dominant_nearend_detection, num_capture_channels_);
|
|
}
|
|
RTC_DCHECK(dominant_nearend_detector_);
|
|
}
|
|
|
|
SuppressionGain::~SuppressionGain() = default;
|
|
|
|
void SuppressionGain::GetGain(
|
|
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>>
|
|
nearend_spectrum,
|
|
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> echo_spectrum,
|
|
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>>
|
|
residual_echo_spectrum,
|
|
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>>
|
|
residual_echo_spectrum_unbounded,
|
|
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>>
|
|
comfort_noise_spectrum,
|
|
const RenderSignalAnalyzer& render_signal_analyzer,
|
|
const AecState& aec_state,
|
|
const std::vector<std::vector<std::vector<float>>>& render,
|
|
bool clock_drift,
|
|
float* high_bands_gain,
|
|
std::array<float, kFftLengthBy2Plus1>* low_band_gain) {
|
|
RTC_DCHECK(high_bands_gain);
|
|
RTC_DCHECK(low_band_gain);
|
|
|
|
// Choose residual echo spectrum for the dominant nearend detector.
|
|
const auto echo = use_unbounded_echo_spectrum_
|
|
? residual_echo_spectrum_unbounded
|
|
: residual_echo_spectrum;
|
|
|
|
// Update the nearend state selection.
|
|
dominant_nearend_detector_->Update(nearend_spectrum, echo,
|
|
comfort_noise_spectrum, initial_state_);
|
|
|
|
// Compute gain for the lower band.
|
|
bool low_noise_render = low_render_detector_.Detect(render);
|
|
LowerBandGain(low_noise_render, aec_state, nearend_spectrum,
|
|
residual_echo_spectrum, comfort_noise_spectrum, clock_drift,
|
|
low_band_gain);
|
|
|
|
// Compute the gain for the upper bands.
|
|
const absl::optional<int> narrow_peak_band =
|
|
render_signal_analyzer.NarrowPeakBand();
|
|
|
|
*high_bands_gain =
|
|
UpperBandsGain(echo_spectrum, comfort_noise_spectrum, narrow_peak_band,
|
|
aec_state.SaturatedEcho(), render, *low_band_gain);
|
|
|
|
data_dumper_->DumpRaw("aec3_dominant_nearend",
|
|
dominant_nearend_detector_->IsNearendState());
|
|
}
|
|
|
|
void SuppressionGain::SetInitialState(bool state) {
|
|
initial_state_ = state;
|
|
if (state) {
|
|
initial_state_change_counter_ = state_change_duration_blocks_;
|
|
} else {
|
|
initial_state_change_counter_ = 0;
|
|
}
|
|
}
|
|
|
|
// Detects when the render signal can be considered to have low power and
|
|
// consist of stationary noise.
|
|
bool SuppressionGain::LowNoiseRenderDetector::Detect(
|
|
const std::vector<std::vector<std::vector<float>>>& render) {
|
|
float x2_sum = 0.f;
|
|
float x2_max = 0.f;
|
|
for (const auto& x_ch : render[0]) {
|
|
for (const auto& x_k : x_ch) {
|
|
const float x2 = x_k * x_k;
|
|
x2_sum += x2;
|
|
x2_max = std::max(x2_max, x2);
|
|
}
|
|
}
|
|
const size_t num_render_channels = render[0].size();
|
|
x2_sum = x2_sum / num_render_channels;
|
|
;
|
|
|
|
constexpr float kThreshold = 50.f * 50.f * 64.f;
|
|
const bool low_noise_render =
|
|
average_power_ < kThreshold && x2_max < 3 * average_power_;
|
|
average_power_ = average_power_ * 0.9f + x2_sum * 0.1f;
|
|
return low_noise_render;
|
|
}
|
|
|
|
SuppressionGain::GainParameters::GainParameters(
|
|
int last_lf_band,
|
|
int first_hf_band,
|
|
const EchoCanceller3Config::Suppressor::Tuning& tuning)
|
|
: max_inc_factor(tuning.max_inc_factor),
|
|
max_dec_factor_lf(tuning.max_dec_factor_lf) {
|
|
// Compute per-band masking thresholds.
|
|
RTC_DCHECK_LT(last_lf_band, first_hf_band);
|
|
auto& lf = tuning.mask_lf;
|
|
auto& hf = tuning.mask_hf;
|
|
RTC_DCHECK_LT(lf.enr_transparent, lf.enr_suppress);
|
|
RTC_DCHECK_LT(hf.enr_transparent, hf.enr_suppress);
|
|
for (int k = 0; k < static_cast<int>(kFftLengthBy2Plus1); k++) {
|
|
float a;
|
|
if (k <= last_lf_band) {
|
|
a = 0.f;
|
|
} else if (k < first_hf_band) {
|
|
a = (k - last_lf_band) / static_cast<float>(first_hf_band - last_lf_band);
|
|
} else {
|
|
a = 1.f;
|
|
}
|
|
enr_transparent_[k] = (1 - a) * lf.enr_transparent + a * hf.enr_transparent;
|
|
enr_suppress_[k] = (1 - a) * lf.enr_suppress + a * hf.enr_suppress;
|
|
emr_transparent_[k] = (1 - a) * lf.emr_transparent + a * hf.emr_transparent;
|
|
}
|
|
}
|
|
|
|
} // namespace webrtc
|