webrtc/modules/video_coding/jitter_buffer_unittest.cc
Niels Möller 2377588c82 Add accessor methods for RTP timestamp of EncodedImage.
Intention is to make the member private, but downstream callers
must be updated to use the accessor methods first.

Bug: webrtc:9378
Change-Id: I3495bd8d545b7234fbea10abfd14f082caa420b6
Reviewed-on: https://webrtc-review.googlesource.com/82160
Reviewed-by: Magnus Jedvert <magjed@webrtc.org>
Reviewed-by: Erik Språng <sprang@webrtc.org>
Reviewed-by: Sebastian Jansson <srte@webrtc.org>
Reviewed-by: Philip Eliasson <philipel@webrtc.org>
Commit-Queue: Niels Moller <nisse@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#24352}
2018-08-21 09:15:51 +00:00

2731 lines
93 KiB
C++

/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <string>
#include <list>
#include <memory>
#include <vector>
#include "common_video/h264/h264_common.h"
#include "modules/video_coding/frame_buffer.h"
#include "modules/video_coding/jitter_buffer.h"
#include "modules/video_coding/media_opt_util.h"
#include "modules/video_coding/packet.h"
#include "modules/video_coding/test/stream_generator.h"
#include "modules/video_coding/test/test_util.h"
#include "rtc_base/location.h"
#include "system_wrappers/include/clock.h"
#include "system_wrappers/include/field_trial.h"
#include "system_wrappers/include/metrics.h"
#include "system_wrappers/include/metrics_default.h"
#include "test/field_trial.h"
#include "test/gmock.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
const uint32_t kProcessIntervalSec = 60;
} // namespace
class Vp9SsMapTest : public ::testing::Test {
protected:
Vp9SsMapTest() : packet_() {}
virtual void SetUp() {
auto& vp9_header =
packet_.video_header.video_type_header.emplace<RTPVideoHeaderVP9>();
packet_.is_first_packet_in_frame = true;
packet_.dataPtr = data_;
packet_.sizeBytes = 1400;
packet_.seqNum = 1234;
packet_.timestamp = 1;
packet_.markerBit = true;
packet_.frameType = kVideoFrameKey;
packet_.codec = kVideoCodecVP9;
packet_.video_header.codec = kVideoCodecVP9;
vp9_header.flexible_mode = false;
vp9_header.gof_idx = 0;
vp9_header.temporal_idx = kNoTemporalIdx;
vp9_header.temporal_up_switch = false;
vp9_header.ss_data_available = true;
vp9_header.gof.SetGofInfoVP9(
kTemporalStructureMode3); // kTemporalStructureMode3: 0-2-1-2..
}
Vp9SsMap map_;
uint8_t data_[1500];
VCMPacket packet_;
};
TEST_F(Vp9SsMapTest, Insert) {
EXPECT_TRUE(map_.Insert(packet_));
}
TEST_F(Vp9SsMapTest, Insert_NoSsData) {
absl::get<RTPVideoHeaderVP9>(packet_.video_header.video_type_header)
.ss_data_available = false;
EXPECT_FALSE(map_.Insert(packet_));
}
TEST_F(Vp9SsMapTest, Find) {
EXPECT_TRUE(map_.Insert(packet_));
Vp9SsMap::SsMap::iterator it;
EXPECT_TRUE(map_.Find(packet_.timestamp, &it));
EXPECT_EQ(packet_.timestamp, it->first);
}
TEST_F(Vp9SsMapTest, Find_WithWrap) {
const uint32_t kSsTimestamp1 = 0xFFFFFFFF;
const uint32_t kSsTimestamp2 = 100;
packet_.timestamp = kSsTimestamp1;
EXPECT_TRUE(map_.Insert(packet_));
packet_.timestamp = kSsTimestamp2;
EXPECT_TRUE(map_.Insert(packet_));
Vp9SsMap::SsMap::iterator it;
EXPECT_FALSE(map_.Find(kSsTimestamp1 - 1, &it));
EXPECT_TRUE(map_.Find(kSsTimestamp1, &it));
EXPECT_EQ(kSsTimestamp1, it->first);
EXPECT_TRUE(map_.Find(0, &it));
EXPECT_EQ(kSsTimestamp1, it->first);
EXPECT_TRUE(map_.Find(kSsTimestamp2 - 1, &it));
EXPECT_EQ(kSsTimestamp1, it->first);
EXPECT_TRUE(map_.Find(kSsTimestamp2, &it));
EXPECT_EQ(kSsTimestamp2, it->first);
EXPECT_TRUE(map_.Find(kSsTimestamp2 + 1, &it));
EXPECT_EQ(kSsTimestamp2, it->first);
}
TEST_F(Vp9SsMapTest, Reset) {
EXPECT_TRUE(map_.Insert(packet_));
Vp9SsMap::SsMap::iterator it;
EXPECT_TRUE(map_.Find(packet_.timestamp, &it));
EXPECT_EQ(packet_.timestamp, it->first);
map_.Reset();
EXPECT_FALSE(map_.Find(packet_.timestamp, &it));
}
TEST_F(Vp9SsMapTest, RemoveOld) {
Vp9SsMap::SsMap::iterator it;
const uint32_t kSsTimestamp1 = 10000;
packet_.timestamp = kSsTimestamp1;
EXPECT_TRUE(map_.Insert(packet_));
const uint32_t kTimestamp = kSsTimestamp1 + kProcessIntervalSec * 90000;
map_.RemoveOld(kTimestamp - 1); // Interval not passed.
EXPECT_TRUE(map_.Find(kSsTimestamp1, &it)); // Should not been removed.
map_.RemoveOld(kTimestamp);
EXPECT_FALSE(map_.Find(kSsTimestamp1, &it));
EXPECT_TRUE(map_.Find(kTimestamp, &it));
EXPECT_EQ(kTimestamp, it->first);
}
TEST_F(Vp9SsMapTest, RemoveOld_WithWrap) {
Vp9SsMap::SsMap::iterator it;
const uint32_t kSsTimestamp1 = 0xFFFFFFFF - kProcessIntervalSec * 90000;
const uint32_t kSsTimestamp2 = 10;
const uint32_t kSsTimestamp3 = 1000;
packet_.timestamp = kSsTimestamp1;
EXPECT_TRUE(map_.Insert(packet_));
packet_.timestamp = kSsTimestamp2;
EXPECT_TRUE(map_.Insert(packet_));
packet_.timestamp = kSsTimestamp3;
EXPECT_TRUE(map_.Insert(packet_));
map_.RemoveOld(kSsTimestamp3);
EXPECT_FALSE(map_.Find(kSsTimestamp1, &it));
EXPECT_FALSE(map_.Find(kSsTimestamp2, &it));
EXPECT_TRUE(map_.Find(kSsTimestamp3, &it));
}
TEST_F(Vp9SsMapTest, UpdatePacket_NoSsData) {
absl::get<RTPVideoHeaderVP9>(packet_.video_header.video_type_header).gof_idx =
0;
EXPECT_FALSE(map_.UpdatePacket(&packet_));
}
TEST_F(Vp9SsMapTest, UpdatePacket_NoGofIdx) {
EXPECT_TRUE(map_.Insert(packet_));
absl::get<RTPVideoHeaderVP9>(packet_.video_header.video_type_header).gof_idx =
kNoGofIdx;
EXPECT_FALSE(map_.UpdatePacket(&packet_));
}
TEST_F(Vp9SsMapTest, UpdatePacket_InvalidGofIdx) {
EXPECT_TRUE(map_.Insert(packet_));
absl::get<RTPVideoHeaderVP9>(packet_.video_header.video_type_header).gof_idx =
4;
EXPECT_FALSE(map_.UpdatePacket(&packet_));
}
TEST_F(Vp9SsMapTest, UpdatePacket) {
auto& vp9_header =
absl::get<RTPVideoHeaderVP9>(packet_.video_header.video_type_header);
EXPECT_TRUE(map_.Insert(packet_)); // kTemporalStructureMode3: 0-2-1-2..
vp9_header.gof_idx = 0;
EXPECT_TRUE(map_.UpdatePacket(&packet_));
EXPECT_EQ(0, vp9_header.temporal_idx);
EXPECT_FALSE(vp9_header.temporal_up_switch);
EXPECT_EQ(1U, vp9_header.num_ref_pics);
EXPECT_EQ(4, vp9_header.pid_diff[0]);
vp9_header.gof_idx = 1;
EXPECT_TRUE(map_.UpdatePacket(&packet_));
EXPECT_EQ(2, vp9_header.temporal_idx);
EXPECT_TRUE(vp9_header.temporal_up_switch);
EXPECT_EQ(1U, vp9_header.num_ref_pics);
EXPECT_EQ(1, vp9_header.pid_diff[0]);
vp9_header.gof_idx = 2;
EXPECT_TRUE(map_.UpdatePacket(&packet_));
EXPECT_EQ(1, vp9_header.temporal_idx);
EXPECT_TRUE(vp9_header.temporal_up_switch);
EXPECT_EQ(1U, vp9_header.num_ref_pics);
EXPECT_EQ(2, vp9_header.pid_diff[0]);
vp9_header.gof_idx = 3;
EXPECT_TRUE(map_.UpdatePacket(&packet_));
EXPECT_EQ(2, vp9_header.temporal_idx);
EXPECT_TRUE(vp9_header.temporal_up_switch);
EXPECT_EQ(1U, vp9_header.num_ref_pics);
EXPECT_EQ(1, vp9_header.pid_diff[0]);
}
class TestBasicJitterBuffer : public ::testing::TestWithParam<std::string>,
public NackSender,
public KeyFrameRequestSender {
public:
void SendNack(const std::vector<uint16_t>& sequence_numbers) override {
nack_sent_.insert(nack_sent_.end(), sequence_numbers.begin(),
sequence_numbers.end());
}
void RequestKeyFrame() override { ++keyframe_requests_; }
std::vector<uint16_t> nack_sent_;
int keyframe_requests_;
protected:
TestBasicJitterBuffer() {}
void SetUp() override {
clock_.reset(new SimulatedClock(0));
jitter_buffer_.reset(new VCMJitterBuffer(
clock_.get(),
std::unique_ptr<EventWrapper>(event_factory_.CreateEvent()), this,
this));
jitter_buffer_->Start();
seq_num_ = 1234;
timestamp_ = 0;
size_ = 1400;
// Data vector - 0, 0, 0x80, 3, 4, 5, 6, 7, 8, 9, 0, 0, 0x80, 3....
data_[0] = 0;
data_[1] = 0;
data_[2] = 0x80;
int count = 3;
for (unsigned int i = 3; i < sizeof(data_) - 3; ++i) {
data_[i] = count;
count++;
if (count == 10) {
data_[i + 1] = 0;
data_[i + 2] = 0;
data_[i + 3] = 0x80;
count = 3;
i += 3;
}
}
WebRtcRTPHeader rtpHeader;
memset(&rtpHeader, 0, sizeof(rtpHeader));
rtpHeader.header.sequenceNumber = seq_num_;
rtpHeader.header.timestamp = timestamp_;
rtpHeader.header.markerBit = true;
rtpHeader.frameType = kVideoFrameDelta;
rtpHeader.video_header().codec = kVideoCodecGeneric;
rtpHeader.video_header().is_first_packet_in_frame = true;
packet_.reset(new VCMPacket(data_, size_, rtpHeader));
}
VCMEncodedFrame* DecodeCompleteFrame() {
VCMEncodedFrame* found_frame = jitter_buffer_->NextCompleteFrame(10);
if (!found_frame)
return nullptr;
return jitter_buffer_->ExtractAndSetDecode(found_frame->Timestamp());
}
VCMEncodedFrame* DecodeIncompleteFrame() {
uint32_t timestamp = 0;
bool found_frame = jitter_buffer_->NextMaybeIncompleteTimestamp(&timestamp);
if (!found_frame)
return NULL;
VCMEncodedFrame* frame = jitter_buffer_->ExtractAndSetDecode(timestamp);
return frame;
}
void CheckOutFrame(VCMEncodedFrame* frame_out,
unsigned int size,
bool startCode) {
ASSERT_TRUE(frame_out);
const uint8_t* outData = frame_out->Buffer();
unsigned int i = 0;
if (startCode) {
EXPECT_EQ(0, outData[0]);
EXPECT_EQ(0, outData[1]);
EXPECT_EQ(0, outData[2]);
EXPECT_EQ(1, outData[3]);
i += 4;
}
EXPECT_EQ(size, frame_out->Length());
int count = 3;
for (; i < size; i++) {
if (outData[i] == 0 && outData[i + 1] == 0 && outData[i + 2] == 0x80) {
i += 2;
} else if (startCode && outData[i] == 0 && outData[i + 1] == 0) {
EXPECT_EQ(0, outData[0]);
EXPECT_EQ(0, outData[1]);
EXPECT_EQ(0, outData[2]);
EXPECT_EQ(1, outData[3]);
i += 3;
} else {
EXPECT_EQ(count, outData[i]);
count++;
if (count == 10) {
count = 3;
}
}
}
}
uint16_t seq_num_;
uint32_t timestamp_;
int size_;
uint8_t data_[1500];
std::unique_ptr<VCMPacket> packet_;
std::unique_ptr<SimulatedClock> clock_;
NullEventFactory event_factory_;
std::unique_ptr<VCMJitterBuffer> jitter_buffer_;
};
class TestRunningJitterBuffer : public ::testing::TestWithParam<std::string>,
public NackSender,
public KeyFrameRequestSender {
public:
void SendNack(const std::vector<uint16_t>& sequence_numbers) {
nack_sent_.insert(nack_sent_.end(), sequence_numbers.begin(),
sequence_numbers.end());
}
void RequestKeyFrame() { ++keyframe_requests_; }
std::vector<uint16_t> nack_sent_;
int keyframe_requests_;
protected:
enum { kDataBufferSize = 10 };
virtual void SetUp() {
clock_.reset(new SimulatedClock(0));
max_nack_list_size_ = 150;
oldest_packet_to_nack_ = 250;
jitter_buffer_ = new VCMJitterBuffer(
clock_.get(),
std::unique_ptr<EventWrapper>(event_factory_.CreateEvent()), this,
this);
stream_generator_ = new StreamGenerator(0, clock_->TimeInMilliseconds());
jitter_buffer_->Start();
jitter_buffer_->SetNackSettings(max_nack_list_size_, oldest_packet_to_nack_,
0);
memset(data_buffer_, 0, kDataBufferSize);
}
virtual void TearDown() {
jitter_buffer_->Stop();
delete stream_generator_;
delete jitter_buffer_;
}
VCMFrameBufferEnum InsertPacketAndPop(int index) {
VCMPacket packet;
packet.dataPtr = data_buffer_;
bool packet_available = stream_generator_->PopPacket(&packet, index);
EXPECT_TRUE(packet_available);
if (!packet_available)
return kGeneralError; // Return here to avoid crashes below.
bool retransmitted = false;
return jitter_buffer_->InsertPacket(packet, &retransmitted);
}
VCMFrameBufferEnum InsertPacket(int index) {
VCMPacket packet;
packet.dataPtr = data_buffer_;
bool packet_available = stream_generator_->GetPacket(&packet, index);
EXPECT_TRUE(packet_available);
if (!packet_available)
return kGeneralError; // Return here to avoid crashes below.
bool retransmitted = false;
return jitter_buffer_->InsertPacket(packet, &retransmitted);
}
VCMFrameBufferEnum InsertFrame(FrameType frame_type) {
stream_generator_->GenerateFrame(
frame_type, (frame_type != kEmptyFrame) ? 1 : 0,
(frame_type == kEmptyFrame) ? 1 : 0, clock_->TimeInMilliseconds());
VCMFrameBufferEnum ret = InsertPacketAndPop(0);
clock_->AdvanceTimeMilliseconds(kDefaultFramePeriodMs);
return ret;
}
VCMFrameBufferEnum InsertFrames(int num_frames, FrameType frame_type) {
VCMFrameBufferEnum ret_for_all = kNoError;
for (int i = 0; i < num_frames; ++i) {
VCMFrameBufferEnum ret = InsertFrame(frame_type);
if (ret < kNoError) {
ret_for_all = ret;
} else if (ret_for_all >= kNoError) {
ret_for_all = ret;
}
}
return ret_for_all;
}
void DropFrame(int num_packets) {
stream_generator_->GenerateFrame(kVideoFrameDelta, num_packets, 0,
clock_->TimeInMilliseconds());
for (int i = 0; i < num_packets; ++i)
stream_generator_->DropLastPacket();
clock_->AdvanceTimeMilliseconds(kDefaultFramePeriodMs);
}
bool DecodeCompleteFrame() {
VCMEncodedFrame* found_frame = jitter_buffer_->NextCompleteFrame(0);
if (!found_frame)
return false;
VCMEncodedFrame* frame =
jitter_buffer_->ExtractAndSetDecode(found_frame->Timestamp());
bool ret = (frame != NULL);
jitter_buffer_->ReleaseFrame(frame);
return ret;
}
bool DecodeIncompleteFrame() {
uint32_t timestamp = 0;
bool found_frame = jitter_buffer_->NextMaybeIncompleteTimestamp(&timestamp);
if (!found_frame)
return false;
VCMEncodedFrame* frame = jitter_buffer_->ExtractAndSetDecode(timestamp);
bool ret = (frame != NULL);
jitter_buffer_->ReleaseFrame(frame);
return ret;
}
VCMJitterBuffer* jitter_buffer_;
StreamGenerator* stream_generator_;
std::unique_ptr<SimulatedClock> clock_;
NullEventFactory event_factory_;
size_t max_nack_list_size_;
int oldest_packet_to_nack_;
uint8_t data_buffer_[kDataBufferSize];
};
class TestJitterBufferNack : public TestRunningJitterBuffer {
protected:
TestJitterBufferNack() {}
virtual void SetUp() {
TestRunningJitterBuffer::SetUp();
jitter_buffer_->SetNackMode(kNack, -1, -1);
}
virtual void TearDown() { TestRunningJitterBuffer::TearDown(); }
};
TEST_F(TestBasicJitterBuffer, StopRunning) {
jitter_buffer_->Stop();
EXPECT_TRUE(NULL == DecodeCompleteFrame());
EXPECT_TRUE(NULL == DecodeIncompleteFrame());
jitter_buffer_->Start();
// Allow selective errors.
jitter_buffer_->SetDecodeErrorMode(kSelectiveErrors);
// No packets inserted.
EXPECT_TRUE(NULL == DecodeCompleteFrame());
EXPECT_TRUE(NULL == DecodeIncompleteFrame());
// Allow decoding with errors.
jitter_buffer_->SetDecodeErrorMode(kWithErrors);
// No packets inserted.
EXPECT_TRUE(NULL == DecodeCompleteFrame());
EXPECT_TRUE(NULL == DecodeIncompleteFrame());
}
TEST_F(TestBasicJitterBuffer, SinglePacketFrame) {
// Always start with a complete key frame when not allowing errors.
jitter_buffer_->SetDecodeErrorMode(kNoErrors);
packet_->frameType = kVideoFrameKey;
packet_->is_first_packet_in_frame = true;
packet_->markerBit = true;
packet_->timestamp += 123 * 90;
// Insert the packet to the jitter buffer and get a frame.
bool retransmitted = false;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
CheckOutFrame(frame_out, size_, false);
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
}
TEST_F(TestBasicJitterBuffer, VerifyHistogramStats) {
metrics::Reset();
// Always start with a complete key frame when not allowing errors.
jitter_buffer_->SetDecodeErrorMode(kNoErrors);
packet_->frameType = kVideoFrameKey;
packet_->is_first_packet_in_frame = true;
packet_->markerBit = true;
packet_->timestamp += 123 * 90;
// Insert single packet frame to the jitter buffer and get a frame.
bool retransmitted = false;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
CheckOutFrame(frame_out, size_, false);
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
// Verify that histograms are updated when the jitter buffer is stopped.
clock_->AdvanceTimeMilliseconds(metrics::kMinRunTimeInSeconds * 1000);
jitter_buffer_->Stop();
EXPECT_EQ(1, metrics::NumEvents("WebRTC.Video.DiscardedPacketsInPercent", 0));
EXPECT_EQ(1,
metrics::NumEvents("WebRTC.Video.DuplicatedPacketsInPercent", 0));
EXPECT_EQ(
1, metrics::NumSamples("WebRTC.Video.CompleteFramesReceivedPerSecond"));
EXPECT_EQ(
1, metrics::NumEvents("WebRTC.Video.KeyFramesReceivedInPermille", 1000));
// Verify that histograms are not updated if stop is called again.
jitter_buffer_->Stop();
EXPECT_EQ(1, metrics::NumSamples("WebRTC.Video.DiscardedPacketsInPercent"));
EXPECT_EQ(1, metrics::NumSamples("WebRTC.Video.DuplicatedPacketsInPercent"));
EXPECT_EQ(
1, metrics::NumSamples("WebRTC.Video.CompleteFramesReceivedPerSecond"));
EXPECT_EQ(1, metrics::NumSamples("WebRTC.Video.KeyFramesReceivedInPermille"));
}
TEST_F(TestBasicJitterBuffer, DualPacketFrame) {
packet_->frameType = kVideoFrameKey;
packet_->is_first_packet_in_frame = true;
packet_->markerBit = false;
bool retransmitted = false;
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
// Should not be complete.
EXPECT_TRUE(frame_out == NULL);
++seq_num_;
packet_->is_first_packet_in_frame = false;
packet_->markerBit = true;
packet_->seqNum = seq_num_;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
frame_out = DecodeCompleteFrame();
CheckOutFrame(frame_out, 2 * size_, false);
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
}
TEST_F(TestBasicJitterBuffer, 100PacketKeyFrame) {
packet_->frameType = kVideoFrameKey;
packet_->is_first_packet_in_frame = true;
packet_->markerBit = false;
bool retransmitted = false;
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
// Frame should not be complete.
EXPECT_TRUE(frame_out == NULL);
// Insert 98 frames.
int loop = 0;
do {
seq_num_++;
packet_->is_first_packet_in_frame = false;
packet_->markerBit = false;
packet_->seqNum = seq_num_;
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
loop++;
} while (loop < 98);
// Insert last packet.
++seq_num_;
packet_->is_first_packet_in_frame = false;
packet_->markerBit = true;
packet_->seqNum = seq_num_;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
frame_out = DecodeCompleteFrame();
CheckOutFrame(frame_out, 100 * size_, false);
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
}
TEST_F(TestBasicJitterBuffer, 100PacketDeltaFrame) {
// Always start with a complete key frame.
packet_->frameType = kVideoFrameKey;
packet_->is_first_packet_in_frame = true;
packet_->markerBit = true;
bool retransmitted = false;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
EXPECT_FALSE(frame_out == NULL);
jitter_buffer_->ReleaseFrame(frame_out);
++seq_num_;
packet_->seqNum = seq_num_;
packet_->markerBit = false;
packet_->frameType = kVideoFrameDelta;
packet_->timestamp += 33 * 90;
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
frame_out = DecodeCompleteFrame();
// Frame should not be complete.
EXPECT_TRUE(frame_out == NULL);
packet_->is_first_packet_in_frame = false;
// Insert 98 frames.
int loop = 0;
do {
++seq_num_;
packet_->seqNum = seq_num_;
// Insert a packet into a frame.
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
loop++;
} while (loop < 98);
// Insert the last packet.
++seq_num_;
packet_->is_first_packet_in_frame = false;
packet_->markerBit = true;
packet_->seqNum = seq_num_;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
frame_out = DecodeCompleteFrame();
CheckOutFrame(frame_out, 100 * size_, false);
EXPECT_EQ(kVideoFrameDelta, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
}
TEST_F(TestBasicJitterBuffer, PacketReorderingReverseOrder) {
// Insert the "first" packet last.
seq_num_ += 100;
packet_->frameType = kVideoFrameKey;
packet_->is_first_packet_in_frame = false;
packet_->markerBit = true;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
bool retransmitted = false;
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
EXPECT_TRUE(frame_out == NULL);
// Insert 98 packets.
int loop = 0;
do {
seq_num_--;
packet_->is_first_packet_in_frame = false;
packet_->markerBit = false;
packet_->seqNum = seq_num_;
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
loop++;
} while (loop < 98);
// Insert the last packet.
seq_num_--;
packet_->is_first_packet_in_frame = true;
packet_->markerBit = false;
packet_->seqNum = seq_num_;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
frame_out = DecodeCompleteFrame();
CheckOutFrame(frame_out, 100 * size_, false);
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
}
TEST_F(TestBasicJitterBuffer, FrameReordering2Frames2PacketsEach) {
packet_->frameType = kVideoFrameDelta;
packet_->is_first_packet_in_frame = true;
packet_->markerBit = false;
bool retransmitted = false;
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
EXPECT_TRUE(frame_out == NULL);
seq_num_++;
packet_->is_first_packet_in_frame = false;
packet_->markerBit = true;
packet_->seqNum = seq_num_;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
// check that we fail to get frame since seqnum is not continuous
frame_out = DecodeCompleteFrame();
EXPECT_TRUE(frame_out == NULL);
seq_num_ -= 3;
timestamp_ -= 33 * 90;
packet_->frameType = kVideoFrameKey;
packet_->is_first_packet_in_frame = true;
packet_->markerBit = false;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
frame_out = DecodeCompleteFrame();
// It should not be complete.
EXPECT_TRUE(frame_out == NULL);
seq_num_++;
packet_->is_first_packet_in_frame = false;
packet_->markerBit = true;
packet_->seqNum = seq_num_;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
frame_out = DecodeCompleteFrame();
CheckOutFrame(frame_out, 2 * size_, false);
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
frame_out = DecodeCompleteFrame();
CheckOutFrame(frame_out, 2 * size_, false);
EXPECT_EQ(kVideoFrameDelta, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
}
TEST_F(TestBasicJitterBuffer, TestReorderingWithPadding) {
packet_->frameType = kVideoFrameKey;
packet_->is_first_packet_in_frame = true;
packet_->markerBit = true;
// Send in an initial good packet/frame (Frame A) to start things off.
bool retransmitted = false;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
EXPECT_TRUE(frame_out != NULL);
jitter_buffer_->ReleaseFrame(frame_out);
// Now send in a complete delta frame (Frame C), but with a sequence number
// gap. No pic index either, so no temporal scalability cheating :)
packet_->frameType = kVideoFrameDelta;
// Leave a gap of 2 sequence numbers and two frames.
packet_->seqNum = seq_num_ + 3;
packet_->timestamp = timestamp_ + (66 * 90);
// Still isFirst = marker = true.
// Session should be complete (frame is complete), but there's nothing to
// decode yet.
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
frame_out = DecodeCompleteFrame();
EXPECT_TRUE(frame_out == NULL);
// Now send in a complete delta frame (Frame B) that is continuous from A, but
// doesn't fill the full gap to C. The rest of the gap is going to be padding.
packet_->seqNum = seq_num_ + 1;
packet_->timestamp = timestamp_ + (33 * 90);
// Still isFirst = marker = true.
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
frame_out = DecodeCompleteFrame();
EXPECT_TRUE(frame_out != NULL);
jitter_buffer_->ReleaseFrame(frame_out);
// But Frame C isn't continuous yet.
frame_out = DecodeCompleteFrame();
EXPECT_TRUE(frame_out == NULL);
// Add in the padding. These are empty packets (data length is 0) with no
// marker bit and matching the timestamp of Frame B.
WebRtcRTPHeader rtpHeader;
memset(&rtpHeader, 0, sizeof(rtpHeader));
rtpHeader.header.sequenceNumber = seq_num_ + 2;
rtpHeader.header.timestamp = timestamp_ + (33 * 90);
rtpHeader.header.markerBit = false;
rtpHeader.video_header().codec = kVideoCodecGeneric;
VCMPacket empty_packet(data_, 0, rtpHeader);
EXPECT_EQ(kOldPacket,
jitter_buffer_->InsertPacket(empty_packet, &retransmitted));
empty_packet.seqNum += 1;
EXPECT_EQ(kOldPacket,
jitter_buffer_->InsertPacket(empty_packet, &retransmitted));
// But now Frame C should be ready!
frame_out = DecodeCompleteFrame();
EXPECT_TRUE(frame_out != NULL);
jitter_buffer_->ReleaseFrame(frame_out);
}
TEST_F(TestBasicJitterBuffer, DuplicatePackets) {
packet_->frameType = kVideoFrameKey;
packet_->is_first_packet_in_frame = true;
packet_->markerBit = false;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
EXPECT_EQ(0, jitter_buffer_->num_packets());
EXPECT_EQ(0, jitter_buffer_->num_duplicated_packets());
bool retransmitted = false;
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
EXPECT_TRUE(frame_out == NULL);
EXPECT_EQ(1, jitter_buffer_->num_packets());
EXPECT_EQ(0, jitter_buffer_->num_duplicated_packets());
// Insert a packet into a frame.
EXPECT_EQ(kDuplicatePacket,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
EXPECT_EQ(2, jitter_buffer_->num_packets());
EXPECT_EQ(1, jitter_buffer_->num_duplicated_packets());
seq_num_++;
packet_->seqNum = seq_num_;
packet_->markerBit = true;
packet_->is_first_packet_in_frame = false;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
frame_out = DecodeCompleteFrame();
ASSERT_TRUE(frame_out != NULL);
CheckOutFrame(frame_out, 2 * size_, false);
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
EXPECT_EQ(3, jitter_buffer_->num_packets());
EXPECT_EQ(1, jitter_buffer_->num_duplicated_packets());
jitter_buffer_->ReleaseFrame(frame_out);
}
TEST_F(TestBasicJitterBuffer, DuplicatePreviousDeltaFramePacket) {
packet_->frameType = kVideoFrameKey;
packet_->is_first_packet_in_frame = true;
packet_->markerBit = true;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
jitter_buffer_->SetDecodeErrorMode(kNoErrors);
EXPECT_EQ(0, jitter_buffer_->num_packets());
EXPECT_EQ(0, jitter_buffer_->num_duplicated_packets());
bool retransmitted = false;
// Insert first complete frame.
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
ASSERT_TRUE(frame_out != NULL);
CheckOutFrame(frame_out, size_, false);
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
// Insert 3 delta frames.
for (uint16_t i = 1; i <= 3; ++i) {
packet_->seqNum = seq_num_ + i;
packet_->timestamp = timestamp_ + (i * 33) * 90;
packet_->frameType = kVideoFrameDelta;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
EXPECT_EQ(i + 1, jitter_buffer_->num_packets());
EXPECT_EQ(0, jitter_buffer_->num_duplicated_packets());
}
// Retransmit second delta frame.
packet_->seqNum = seq_num_ + 2;
packet_->timestamp = timestamp_ + 66 * 90;
EXPECT_EQ(kDuplicatePacket,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
EXPECT_EQ(5, jitter_buffer_->num_packets());
EXPECT_EQ(1, jitter_buffer_->num_duplicated_packets());
// Should be able to decode 3 delta frames, key frame already decoded.
for (size_t i = 0; i < 3; ++i) {
frame_out = DecodeCompleteFrame();
ASSERT_TRUE(frame_out != NULL);
CheckOutFrame(frame_out, size_, false);
EXPECT_EQ(kVideoFrameDelta, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
}
}
TEST_F(TestBasicJitterBuffer, TestSkipForwardVp9) {
// Verify that JB skips forward to next base layer frame.
// -------------------------------------------------
// | 65485 | 65486 | 65487 | 65488 | 65489 | ...
// | pid:5 | pid:6 | pid:7 | pid:8 | pid:9 | ...
// | tid:0 | tid:2 | tid:1 | tid:2 | tid:0 | ...
// | ss | x | x | x | |
// -------------------------------------------------
// |<----------tl0idx:200--------->|<---tl0idx:201---
auto& vp9_header =
packet_->video_header.video_type_header.emplace<RTPVideoHeaderVP9>();
bool re = false;
packet_->codec = kVideoCodecVP9;
packet_->video_header.codec = kVideoCodecVP9;
packet_->is_first_packet_in_frame = true;
packet_->markerBit = true;
vp9_header.flexible_mode = false;
vp9_header.spatial_idx = 0;
vp9_header.beginning_of_frame = true;
vp9_header.end_of_frame = true;
vp9_header.temporal_up_switch = false;
packet_->seqNum = 65485;
packet_->timestamp = 1000;
packet_->frameType = kVideoFrameKey;
vp9_header.picture_id = 5;
vp9_header.tl0_pic_idx = 200;
vp9_header.temporal_idx = 0;
vp9_header.ss_data_available = true;
vp9_header.gof.SetGofInfoVP9(
kTemporalStructureMode3); // kTemporalStructureMode3: 0-2-1-2..
EXPECT_EQ(kCompleteSession, jitter_buffer_->InsertPacket(*packet_, &re));
// Insert next temporal layer 0.
packet_->seqNum = 65489;
packet_->timestamp = 13000;
packet_->frameType = kVideoFrameDelta;
vp9_header.picture_id = 9;
vp9_header.tl0_pic_idx = 201;
vp9_header.temporal_idx = 0;
vp9_header.ss_data_available = false;
EXPECT_EQ(kCompleteSession, jitter_buffer_->InsertPacket(*packet_, &re));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
EXPECT_EQ(1000U, frame_out->Timestamp());
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
frame_out = DecodeCompleteFrame();
EXPECT_EQ(13000U, frame_out->Timestamp());
EXPECT_EQ(kVideoFrameDelta, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
}
TEST_F(TestBasicJitterBuffer, ReorderedVp9SsData_3TlLayers) {
// Verify that frames are updated with SS data when SS packet is reordered.
// --------------------------------
// | 65486 | 65487 | 65485 |...
// | pid:6 | pid:7 | pid:5 |...
// | tid:2 | tid:1 | tid:0 |...
// | | | ss |
// --------------------------------
// |<--------tl0idx:200--------->|
auto& vp9_header =
packet_->video_header.video_type_header.emplace<RTPVideoHeaderVP9>();
bool re = false;
packet_->codec = kVideoCodecVP9;
packet_->video_header.codec = kVideoCodecVP9;
packet_->is_first_packet_in_frame = true;
packet_->markerBit = true;
vp9_header.flexible_mode = false;
vp9_header.spatial_idx = 0;
vp9_header.beginning_of_frame = true;
vp9_header.end_of_frame = true;
vp9_header.tl0_pic_idx = 200;
packet_->seqNum = 65486;
packet_->timestamp = 6000;
packet_->frameType = kVideoFrameDelta;
vp9_header.picture_id = 6;
vp9_header.temporal_idx = 2;
vp9_header.temporal_up_switch = true;
EXPECT_EQ(kCompleteSession, jitter_buffer_->InsertPacket(*packet_, &re));
packet_->seqNum = 65487;
packet_->timestamp = 9000;
packet_->frameType = kVideoFrameDelta;
vp9_header.picture_id = 7;
vp9_header.temporal_idx = 1;
vp9_header.temporal_up_switch = true;
EXPECT_EQ(kCompleteSession, jitter_buffer_->InsertPacket(*packet_, &re));
// Insert first frame with SS data.
packet_->seqNum = 65485;
packet_->timestamp = 3000;
packet_->frameType = kVideoFrameKey;
packet_->width = 352;
packet_->height = 288;
vp9_header.picture_id = 5;
vp9_header.temporal_idx = 0;
vp9_header.temporal_up_switch = false;
vp9_header.ss_data_available = true;
vp9_header.gof.SetGofInfoVP9(
kTemporalStructureMode3); // kTemporalStructureMode3: 0-2-1-2..
EXPECT_EQ(kCompleteSession, jitter_buffer_->InsertPacket(*packet_, &re));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
EXPECT_EQ(3000U, frame_out->Timestamp());
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
EXPECT_EQ(0, frame_out->CodecSpecific()->codecSpecific.VP9.temporal_idx);
EXPECT_FALSE(
frame_out->CodecSpecific()->codecSpecific.VP9.temporal_up_switch);
jitter_buffer_->ReleaseFrame(frame_out);
frame_out = DecodeCompleteFrame();
EXPECT_EQ(6000U, frame_out->Timestamp());
EXPECT_EQ(kVideoFrameDelta, frame_out->FrameType());
EXPECT_EQ(2, frame_out->CodecSpecific()->codecSpecific.VP9.temporal_idx);
EXPECT_TRUE(frame_out->CodecSpecific()->codecSpecific.VP9.temporal_up_switch);
jitter_buffer_->ReleaseFrame(frame_out);
frame_out = DecodeCompleteFrame();
EXPECT_EQ(9000U, frame_out->Timestamp());
EXPECT_EQ(kVideoFrameDelta, frame_out->FrameType());
EXPECT_EQ(1, frame_out->CodecSpecific()->codecSpecific.VP9.temporal_idx);
EXPECT_TRUE(frame_out->CodecSpecific()->codecSpecific.VP9.temporal_up_switch);
jitter_buffer_->ReleaseFrame(frame_out);
}
TEST_F(TestBasicJitterBuffer, ReorderedVp9SsData_2Tl2SLayers) {
// Verify that frames are updated with SS data when SS packet is reordered.
// -----------------------------------------
// | 65486 | 65487 | 65485 | 65484 |...
// | pid:6 | pid:6 | pid:5 | pid:5 |...
// | tid:1 | tid:1 | tid:0 | tid:0 |...
// | sid:0 | sid:1 | sid:1 | sid:0 |...
// | t:6000 | t:6000 | t:3000 | t:3000 |
// | | | | ss |
// -----------------------------------------
// |<-----------tl0idx:200------------>|
auto& vp9_header =
packet_->video_header.video_type_header.emplace<RTPVideoHeaderVP9>();
bool re = false;
packet_->codec = kVideoCodecVP9;
packet_->video_header.codec = kVideoCodecVP9;
vp9_header.flexible_mode = false;
vp9_header.beginning_of_frame = true;
vp9_header.end_of_frame = true;
vp9_header.tl0_pic_idx = 200;
packet_->is_first_packet_in_frame = true;
packet_->markerBit = false;
packet_->seqNum = 65486;
packet_->timestamp = 6000;
packet_->frameType = kVideoFrameDelta;
vp9_header.spatial_idx = 0;
vp9_header.picture_id = 6;
vp9_header.temporal_idx = 1;
vp9_header.temporal_up_switch = true;
EXPECT_EQ(kIncomplete, jitter_buffer_->InsertPacket(*packet_, &re));
packet_->is_first_packet_in_frame = false;
packet_->markerBit = true;
packet_->seqNum = 65487;
packet_->frameType = kVideoFrameDelta;
vp9_header.spatial_idx = 1;
vp9_header.picture_id = 6;
vp9_header.temporal_idx = 1;
vp9_header.temporal_up_switch = true;
EXPECT_EQ(kCompleteSession, jitter_buffer_->InsertPacket(*packet_, &re));
packet_->is_first_packet_in_frame = false;
packet_->markerBit = true;
packet_->seqNum = 65485;
packet_->timestamp = 3000;
packet_->frameType = kVideoFrameKey;
vp9_header.spatial_idx = 1;
vp9_header.picture_id = 5;
vp9_header.temporal_idx = 0;
vp9_header.temporal_up_switch = false;
EXPECT_EQ(kIncomplete, jitter_buffer_->InsertPacket(*packet_, &re));
// Insert first frame with SS data.
packet_->is_first_packet_in_frame = true;
packet_->markerBit = false;
packet_->seqNum = 65484;
packet_->frameType = kVideoFrameKey;
packet_->width = 352;
packet_->height = 288;
vp9_header.spatial_idx = 0;
vp9_header.picture_id = 5;
vp9_header.temporal_idx = 0;
vp9_header.temporal_up_switch = false;
vp9_header.ss_data_available = true;
vp9_header.gof.SetGofInfoVP9(
kTemporalStructureMode2); // kTemporalStructureMode3: 0-1-0-1..
EXPECT_EQ(kCompleteSession, jitter_buffer_->InsertPacket(*packet_, &re));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
EXPECT_EQ(3000U, frame_out->Timestamp());
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
EXPECT_EQ(0, frame_out->CodecSpecific()->codecSpecific.VP9.temporal_idx);
EXPECT_FALSE(
frame_out->CodecSpecific()->codecSpecific.VP9.temporal_up_switch);
jitter_buffer_->ReleaseFrame(frame_out);
frame_out = DecodeCompleteFrame();
EXPECT_EQ(6000U, frame_out->Timestamp());
EXPECT_EQ(kVideoFrameDelta, frame_out->FrameType());
EXPECT_EQ(1, frame_out->CodecSpecific()->codecSpecific.VP9.temporal_idx);
EXPECT_TRUE(frame_out->CodecSpecific()->codecSpecific.VP9.temporal_up_switch);
jitter_buffer_->ReleaseFrame(frame_out);
}
TEST_F(TestBasicJitterBuffer, H264InsertStartCode) {
packet_->frameType = kVideoFrameKey;
packet_->is_first_packet_in_frame = true;
packet_->markerBit = false;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
packet_->insertStartCode = true;
bool retransmitted = false;
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
// Frame should not be complete.
EXPECT_TRUE(frame_out == NULL);
seq_num_++;
packet_->is_first_packet_in_frame = false;
packet_->markerBit = true;
packet_->seqNum = seq_num_;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
frame_out = DecodeCompleteFrame();
CheckOutFrame(frame_out, size_ * 2 + 4 * 2, true);
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
}
TEST_F(TestBasicJitterBuffer, SpsAndPpsHandling) {
jitter_buffer_->SetDecodeErrorMode(kNoErrors);
auto& h264_header =
packet_->video_header.video_type_header.emplace<RTPVideoHeaderH264>();
packet_->timestamp = timestamp_;
packet_->frameType = kVideoFrameKey;
packet_->is_first_packet_in_frame = true;
packet_->markerBit = true;
packet_->codec = kVideoCodecH264;
packet_->video_header.codec = kVideoCodecH264;
h264_header.nalu_type = H264::NaluType::kIdr;
h264_header.nalus[0].type = H264::NaluType::kIdr;
h264_header.nalus[0].sps_id = -1;
h264_header.nalus[0].pps_id = 0;
h264_header.nalus_length = 1;
bool retransmitted = false;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
// Not decodable since sps and pps are missing.
EXPECT_EQ(nullptr, DecodeCompleteFrame());
timestamp_ += 3000;
packet_->timestamp = timestamp_;
++seq_num_;
packet_->seqNum = seq_num_;
packet_->frameType = kVideoFrameKey;
packet_->is_first_packet_in_frame = true;
packet_->markerBit = false;
packet_->codec = kVideoCodecH264;
packet_->video_header.codec = kVideoCodecH264;
h264_header.nalu_type = H264::NaluType::kStapA;
h264_header.nalus[0].type = H264::NaluType::kSps;
h264_header.nalus[0].sps_id = 0;
h264_header.nalus[0].pps_id = -1;
h264_header.nalus[1].type = H264::NaluType::kPps;
h264_header.nalus[1].sps_id = 0;
h264_header.nalus[1].pps_id = 0;
h264_header.nalus_length = 2;
// Not complete since the marker bit hasn't been received.
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
++seq_num_;
packet_->seqNum = seq_num_;
packet_->frameType = kVideoFrameKey;
packet_->is_first_packet_in_frame = false;
packet_->markerBit = true;
packet_->codec = kVideoCodecH264;
packet_->video_header.codec = kVideoCodecH264;
h264_header.nalu_type = H264::NaluType::kIdr;
h264_header.nalus[0].type = H264::NaluType::kIdr;
h264_header.nalus[0].sps_id = -1;
h264_header.nalus[0].pps_id = 0;
h264_header.nalus_length = 1;
// Complete and decodable since the pps and sps are received in the first
// packet of this frame.
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
ASSERT_NE(nullptr, frame_out);
jitter_buffer_->ReleaseFrame(frame_out);
timestamp_ += 3000;
packet_->timestamp = timestamp_;
++seq_num_;
packet_->seqNum = seq_num_;
packet_->frameType = kVideoFrameDelta;
packet_->is_first_packet_in_frame = true;
packet_->markerBit = true;
packet_->codec = kVideoCodecH264;
packet_->video_header.codec = kVideoCodecH264;
h264_header.nalu_type = H264::NaluType::kSlice;
h264_header.nalus[0].type = H264::NaluType::kSlice;
h264_header.nalus[0].sps_id = -1;
h264_header.nalus[0].pps_id = 0;
h264_header.nalus_length = 1;
// Complete and decodable since sps, pps and key frame has been received.
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
frame_out = DecodeCompleteFrame();
ASSERT_NE(nullptr, frame_out);
jitter_buffer_->ReleaseFrame(frame_out);
}
// Test threshold conditions of decodable state.
TEST_F(TestBasicJitterBuffer, PacketLossWithSelectiveErrorsThresholdCheck) {
jitter_buffer_->SetDecodeErrorMode(kSelectiveErrors);
// Always start with a key frame. Use 10 packets to test Decodable State
// boundaries.
packet_->frameType = kVideoFrameKey;
packet_->is_first_packet_in_frame = true;
packet_->markerBit = false;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
bool retransmitted = false;
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
uint32_t timestamp = 0;
EXPECT_EQ(jitter_buffer_->NextCompleteFrame(0), nullptr);
EXPECT_FALSE(jitter_buffer_->NextMaybeIncompleteTimestamp(&timestamp));
packet_->is_first_packet_in_frame = false;
for (int i = 1; i < 9; ++i) {
packet_->seqNum++;
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
EXPECT_EQ(jitter_buffer_->NextCompleteFrame(0), nullptr);
EXPECT_FALSE(jitter_buffer_->NextMaybeIncompleteTimestamp(&timestamp));
}
// last packet
packet_->markerBit = true;
packet_->seqNum++;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
CheckOutFrame(frame_out, 10 * size_, false);
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
// An incomplete frame can only be decoded once a subsequent frame has begun
// to arrive. Insert packet in distant frame for this purpose.
packet_->frameType = kVideoFrameDelta;
packet_->is_first_packet_in_frame = true;
packet_->markerBit = false;
packet_->seqNum += 100;
packet_->timestamp += 33 * 90 * 8;
EXPECT_EQ(kDecodableSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
EXPECT_EQ(jitter_buffer_->NextCompleteFrame(0), nullptr);
EXPECT_FALSE(jitter_buffer_->NextMaybeIncompleteTimestamp(&timestamp));
// Insert second frame
packet_->seqNum -= 99;
packet_->timestamp -= 33 * 90 * 7;
EXPECT_EQ(kDecodableSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
EXPECT_EQ(jitter_buffer_->NextCompleteFrame(0), nullptr);
EXPECT_TRUE(jitter_buffer_->NextMaybeIncompleteTimestamp(&timestamp));
packet_->is_first_packet_in_frame = false;
for (int i = 1; i < 8; ++i) {
packet_->seqNum++;
EXPECT_EQ(kDecodableSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
EXPECT_EQ(jitter_buffer_->NextCompleteFrame(0), nullptr);
EXPECT_TRUE(jitter_buffer_->NextMaybeIncompleteTimestamp(&timestamp));
}
packet_->seqNum++;
EXPECT_EQ(kDecodableSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
EXPECT_EQ(jitter_buffer_->NextCompleteFrame(0), nullptr);
EXPECT_TRUE(jitter_buffer_->NextMaybeIncompleteTimestamp(&timestamp));
frame_out = DecodeIncompleteFrame();
ASSERT_FALSE(NULL == frame_out);
CheckOutFrame(frame_out, 9 * size_, false);
EXPECT_EQ(kVideoFrameDelta, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
packet_->markerBit = true;
packet_->seqNum++;
EXPECT_EQ(kOldPacket, jitter_buffer_->InsertPacket(*packet_, &retransmitted));
}
// Make sure first packet is present before a frame can be decoded.
TEST_F(TestBasicJitterBuffer, PacketLossWithSelectiveErrorsIncompleteKey) {
jitter_buffer_->SetDecodeErrorMode(kSelectiveErrors);
// Always start with a key frame.
packet_->frameType = kVideoFrameKey;
packet_->is_first_packet_in_frame = true;
packet_->markerBit = true;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
bool retransmitted = false;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
CheckOutFrame(frame_out, size_, false);
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
// An incomplete frame can only be decoded once a subsequent frame has begun
// to arrive. Insert packet in distant frame for this purpose.
packet_->frameType = kVideoFrameDelta;
packet_->is_first_packet_in_frame = false;
packet_->markerBit = false;
packet_->seqNum += 100;
packet_->timestamp += 33 * 90 * 8;
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
uint32_t timestamp;
EXPECT_EQ(jitter_buffer_->NextCompleteFrame(0), nullptr);
EXPECT_FALSE(jitter_buffer_->NextMaybeIncompleteTimestamp(&timestamp));
// Insert second frame - an incomplete key frame.
packet_->frameType = kVideoFrameKey;
packet_->is_first_packet_in_frame = true;
packet_->seqNum -= 99;
packet_->timestamp -= 33 * 90 * 7;
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
EXPECT_EQ(jitter_buffer_->NextCompleteFrame(0), nullptr);
EXPECT_FALSE(jitter_buffer_->NextMaybeIncompleteTimestamp(&timestamp));
// Insert a few more packets. Make sure we're waiting for the key frame to be
// complete.
packet_->is_first_packet_in_frame = false;
for (int i = 1; i < 5; ++i) {
packet_->seqNum++;
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
EXPECT_EQ(jitter_buffer_->NextCompleteFrame(0), nullptr);
EXPECT_FALSE(jitter_buffer_->NextMaybeIncompleteTimestamp(&timestamp));
}
// Complete key frame.
packet_->markerBit = true;
packet_->seqNum++;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
frame_out = DecodeCompleteFrame();
CheckOutFrame(frame_out, 6 * size_, false);
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
}
// Make sure first packet is present before a frame can be decoded.
TEST_F(TestBasicJitterBuffer, PacketLossWithSelectiveErrorsMissingFirstPacket) {
jitter_buffer_->SetDecodeErrorMode(kSelectiveErrors);
// Always start with a key frame.
packet_->frameType = kVideoFrameKey;
packet_->is_first_packet_in_frame = true;
packet_->markerBit = true;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
bool retransmitted = false;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
CheckOutFrame(frame_out, size_, false);
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
// An incomplete frame can only be decoded once a subsequent frame has begun
// to arrive. Insert packet in distant frame for this purpose.
packet_->frameType = kVideoFrameDelta;
packet_->is_first_packet_in_frame = false;
packet_->markerBit = false;
packet_->seqNum += 100;
packet_->timestamp += 33 * 90 * 8;
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
uint32_t timestamp;
EXPECT_EQ(jitter_buffer_->NextCompleteFrame(0), nullptr);
EXPECT_FALSE(jitter_buffer_->NextMaybeIncompleteTimestamp(&timestamp));
// Insert second frame with the first packet missing. Make sure we're waiting
// for the key frame to be complete.
packet_->seqNum -= 98;
packet_->timestamp -= 33 * 90 * 7;
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
EXPECT_EQ(jitter_buffer_->NextCompleteFrame(0), nullptr);
EXPECT_FALSE(jitter_buffer_->NextMaybeIncompleteTimestamp(&timestamp));
for (int i = 0; i < 5; ++i) {
packet_->seqNum++;
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
EXPECT_EQ(jitter_buffer_->NextCompleteFrame(0), nullptr);
EXPECT_FALSE(jitter_buffer_->NextMaybeIncompleteTimestamp(&timestamp));
}
// Add first packet. Frame should now be decodable, but incomplete.
packet_->is_first_packet_in_frame = true;
packet_->seqNum -= 6;
EXPECT_EQ(kDecodableSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
EXPECT_EQ(jitter_buffer_->NextCompleteFrame(0), nullptr);
EXPECT_TRUE(jitter_buffer_->NextMaybeIncompleteTimestamp(&timestamp));
frame_out = DecodeIncompleteFrame();
CheckOutFrame(frame_out, 7 * size_, false);
EXPECT_EQ(kVideoFrameDelta, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
}
TEST_F(TestBasicJitterBuffer, DiscontinuousStreamWhenDecodingWithErrors) {
// Will use one packet per frame.
jitter_buffer_->SetDecodeErrorMode(kWithErrors);
packet_->frameType = kVideoFrameKey;
packet_->is_first_packet_in_frame = true;
packet_->markerBit = true;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
bool retransmitted = false;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
uint32_t next_timestamp;
VCMEncodedFrame* frame = jitter_buffer_->NextCompleteFrame(0);
EXPECT_NE(frame, nullptr);
EXPECT_EQ(packet_->timestamp, frame->Timestamp());
frame = jitter_buffer_->ExtractAndSetDecode(frame->Timestamp());
EXPECT_TRUE(frame != NULL);
jitter_buffer_->ReleaseFrame(frame);
// Drop a complete frame.
timestamp_ += 2 * 33 * 90;
seq_num_ += 2;
packet_->frameType = kVideoFrameDelta;
packet_->is_first_packet_in_frame = true;
packet_->markerBit = false;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
EXPECT_EQ(kDecodableSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
// Insert a packet (so the previous one will be released).
timestamp_ += 33 * 90;
seq_num_ += 2;
packet_->frameType = kVideoFrameDelta;
packet_->is_first_packet_in_frame = true;
packet_->markerBit = false;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
EXPECT_EQ(kDecodableSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
EXPECT_EQ(jitter_buffer_->NextCompleteFrame(0), nullptr);
EXPECT_TRUE(jitter_buffer_->NextMaybeIncompleteTimestamp(&next_timestamp));
EXPECT_EQ(packet_->timestamp - 33 * 90, next_timestamp);
}
TEST_F(TestBasicJitterBuffer, PacketLoss) {
// Verify missing packets statistics and not decodable packets statistics.
// Insert 10 frames consisting of 4 packets and remove one from all of them.
// The last packet is an empty (non-media) packet.
// Select a start seqNum which triggers a difficult wrap situation
// The JB will only output (incomplete)frames if the next one has started
// to arrive. Start by inserting one frame (key).
jitter_buffer_->SetDecodeErrorMode(kWithErrors);
seq_num_ = 0xffff - 4;
seq_num_++;
packet_->frameType = kVideoFrameKey;
packet_->is_first_packet_in_frame = true;
packet_->markerBit = false;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
packet_->completeNALU = kNaluStart;
bool retransmitted = false;
EXPECT_EQ(kDecodableSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
for (int i = 0; i < 11; ++i) {
webrtc::FrameType frametype = kVideoFrameDelta;
seq_num_++;
timestamp_ += 33 * 90;
packet_->frameType = frametype;
packet_->is_first_packet_in_frame = true;
packet_->markerBit = false;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
packet_->completeNALU = kNaluStart;
EXPECT_EQ(kDecodableSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
// Should not be complete.
EXPECT_TRUE(frame_out == NULL);
seq_num_ += 2;
packet_->is_first_packet_in_frame = false;
packet_->markerBit = true;
packet_->seqNum = seq_num_;
packet_->completeNALU = kNaluEnd;
EXPECT_EQ(jitter_buffer_->InsertPacket(*packet_, &retransmitted),
kDecodableSession);
// Insert an empty (non-media) packet.
seq_num_++;
packet_->is_first_packet_in_frame = false;
packet_->markerBit = false;
packet_->seqNum = seq_num_;
packet_->completeNALU = kNaluEnd;
packet_->frameType = kEmptyFrame;
EXPECT_EQ(jitter_buffer_->InsertPacket(*packet_, &retransmitted),
kDecodableSession);
frame_out = DecodeIncompleteFrame();
// One of the packets has been discarded by the jitter buffer.
// Last frame can't be extracted yet.
if (i < 10) {
CheckOutFrame(frame_out, size_, false);
if (i == 0) {
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
} else {
EXPECT_EQ(frametype, frame_out->FrameType());
}
EXPECT_FALSE(frame_out->Complete());
EXPECT_FALSE(frame_out->MissingFrame());
}
jitter_buffer_->ReleaseFrame(frame_out);
}
// Insert 3 old packets and verify that we have 3 discarded packets
// Match value to actual latest timestamp decoded.
timestamp_ -= 33 * 90;
packet_->timestamp = timestamp_ - 1000;
EXPECT_EQ(kOldPacket, jitter_buffer_->InsertPacket(*packet_, &retransmitted));
packet_->timestamp = timestamp_ - 500;
EXPECT_EQ(kOldPacket, jitter_buffer_->InsertPacket(*packet_, &retransmitted));
packet_->timestamp = timestamp_ - 100;
EXPECT_EQ(kOldPacket, jitter_buffer_->InsertPacket(*packet_, &retransmitted));
EXPECT_EQ(3, jitter_buffer_->num_discarded_packets());
jitter_buffer_->Flush();
// This statistic shouldn't be reset by a flush.
EXPECT_EQ(3, jitter_buffer_->num_discarded_packets());
}
TEST_F(TestBasicJitterBuffer, DeltaFrame100PacketsWithSeqNumWrap) {
seq_num_ = 0xfff0;
packet_->frameType = kVideoFrameKey;
packet_->is_first_packet_in_frame = true;
packet_->markerBit = false;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
bool retransmitted = false;
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
EXPECT_TRUE(frame_out == NULL);
int loop = 0;
do {
seq_num_++;
packet_->is_first_packet_in_frame = false;
packet_->markerBit = false;
packet_->seqNum = seq_num_;
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
frame_out = DecodeCompleteFrame();
EXPECT_TRUE(frame_out == NULL);
loop++;
} while (loop < 98);
seq_num_++;
packet_->is_first_packet_in_frame = false;
packet_->markerBit = true;
packet_->seqNum = seq_num_;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
frame_out = DecodeCompleteFrame();
CheckOutFrame(frame_out, 100 * size_, false);
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
}
TEST_F(TestBasicJitterBuffer, PacketReorderingReverseWithNegSeqNumWrap) {
// Insert "first" packet last seqnum.
seq_num_ = 10;
packet_->frameType = kVideoFrameKey;
packet_->is_first_packet_in_frame = false;
packet_->markerBit = true;
packet_->seqNum = seq_num_;
bool retransmitted = false;
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
// Should not be complete.
EXPECT_TRUE(frame_out == NULL);
// Insert 98 frames.
int loop = 0;
do {
seq_num_--;
packet_->is_first_packet_in_frame = false;
packet_->markerBit = false;
packet_->seqNum = seq_num_;
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
frame_out = DecodeCompleteFrame();
EXPECT_TRUE(frame_out == NULL);
loop++;
} while (loop < 98);
// Insert last packet.
seq_num_--;
packet_->is_first_packet_in_frame = true;
packet_->markerBit = false;
packet_->seqNum = seq_num_;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
frame_out = DecodeCompleteFrame();
CheckOutFrame(frame_out, 100 * size_, false);
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
}
TEST_F(TestBasicJitterBuffer, TestInsertOldFrame) {
// ------- -------
// | 2 | | 1 |
// ------- -------
// t = 3000 t = 2000
seq_num_ = 2;
timestamp_ = 3000;
packet_->frameType = kVideoFrameKey;
packet_->is_first_packet_in_frame = true;
packet_->markerBit = true;
packet_->timestamp = timestamp_;
packet_->seqNum = seq_num_;
bool retransmitted = false;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
EXPECT_EQ(3000u, frame_out->Timestamp());
CheckOutFrame(frame_out, size_, false);
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
seq_num_--;
timestamp_ = 2000;
packet_->frameType = kVideoFrameDelta;
packet_->is_first_packet_in_frame = true;
packet_->markerBit = true;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
EXPECT_EQ(kOldPacket, jitter_buffer_->InsertPacket(*packet_, &retransmitted));
}
TEST_F(TestBasicJitterBuffer, TestInsertOldFrameWithSeqNumWrap) {
// ------- -------
// | 2 | | 1 |
// ------- -------
// t = 3000 t = 0xffffff00
seq_num_ = 2;
timestamp_ = 3000;
packet_->frameType = kVideoFrameKey;
packet_->is_first_packet_in_frame = true;
packet_->markerBit = true;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
bool retransmitted = false;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
EXPECT_EQ(timestamp_, frame_out->Timestamp());
CheckOutFrame(frame_out, size_, false);
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
seq_num_--;
timestamp_ = 0xffffff00;
packet_->frameType = kVideoFrameDelta;
packet_->is_first_packet_in_frame = true;
packet_->markerBit = true;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
// This timestamp is old.
EXPECT_EQ(kOldPacket, jitter_buffer_->InsertPacket(*packet_, &retransmitted));
}
TEST_F(TestBasicJitterBuffer, TimestampWrap) {
// --------------- ---------------
// | 1 | 2 | | 3 | 4 |
// --------------- ---------------
// t = 0xffffff00 t = 33*90
timestamp_ = 0xffffff00;
packet_->frameType = kVideoFrameKey;
packet_->is_first_packet_in_frame = true;
packet_->markerBit = false;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
bool retransmitted = false;
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
EXPECT_TRUE(frame_out == NULL);
seq_num_++;
packet_->is_first_packet_in_frame = false;
packet_->markerBit = true;
packet_->seqNum = seq_num_;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
frame_out = DecodeCompleteFrame();
CheckOutFrame(frame_out, 2 * size_, false);
jitter_buffer_->ReleaseFrame(frame_out);
seq_num_++;
timestamp_ += 33 * 90;
packet_->frameType = kVideoFrameDelta;
packet_->is_first_packet_in_frame = true;
packet_->markerBit = false;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
frame_out = DecodeCompleteFrame();
EXPECT_TRUE(frame_out == NULL);
seq_num_++;
packet_->is_first_packet_in_frame = false;
packet_->markerBit = true;
packet_->seqNum = seq_num_;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
frame_out = DecodeCompleteFrame();
CheckOutFrame(frame_out, 2 * size_, false);
EXPECT_EQ(kVideoFrameDelta, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
}
TEST_F(TestBasicJitterBuffer, 2FrameWithTimestampWrap) {
// ------- -------
// | 1 | | 2 |
// ------- -------
// t = 0xffffff00 t = 2700
timestamp_ = 0xffffff00;
packet_->frameType = kVideoFrameKey;
packet_->is_first_packet_in_frame = true;
packet_->markerBit = true;
packet_->timestamp = timestamp_;
bool retransmitted = false;
// Insert first frame (session will be complete).
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
// Insert next frame.
seq_num_++;
timestamp_ = 2700;
packet_->frameType = kVideoFrameDelta;
packet_->is_first_packet_in_frame = true;
packet_->markerBit = true;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
EXPECT_EQ(0xffffff00, frame_out->Timestamp());
CheckOutFrame(frame_out, size_, false);
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
VCMEncodedFrame* frame_out2 = DecodeCompleteFrame();
EXPECT_EQ(2700u, frame_out2->Timestamp());
CheckOutFrame(frame_out2, size_, false);
EXPECT_EQ(kVideoFrameDelta, frame_out2->FrameType());
jitter_buffer_->ReleaseFrame(frame_out2);
}
TEST_F(TestBasicJitterBuffer, Insert2FramesReOrderedWithTimestampWrap) {
// ------- -------
// | 2 | | 1 |
// ------- -------
// t = 2700 t = 0xffffff00
seq_num_ = 2;
timestamp_ = 2700;
packet_->frameType = kVideoFrameDelta;
packet_->is_first_packet_in_frame = true;
packet_->markerBit = true;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
bool retransmitted = false;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
// Insert second frame
seq_num_--;
timestamp_ = 0xffffff00;
packet_->frameType = kVideoFrameKey;
packet_->is_first_packet_in_frame = true;
packet_->markerBit = true;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
EXPECT_EQ(0xffffff00, frame_out->Timestamp());
CheckOutFrame(frame_out, size_, false);
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
VCMEncodedFrame* frame_out2 = DecodeCompleteFrame();
EXPECT_EQ(2700u, frame_out2->Timestamp());
CheckOutFrame(frame_out2, size_, false);
EXPECT_EQ(kVideoFrameDelta, frame_out2->FrameType());
jitter_buffer_->ReleaseFrame(frame_out2);
}
TEST_F(TestBasicJitterBuffer, DeltaFrameWithMoreThanMaxNumberOfPackets) {
int loop = 0;
bool firstPacket = true;
bool retransmitted = false;
// Insert kMaxPacketsInJitterBuffer into frame.
do {
seq_num_++;
packet_->is_first_packet_in_frame = false;
packet_->markerBit = false;
packet_->seqNum = seq_num_;
if (firstPacket) {
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
firstPacket = false;
} else {
EXPECT_EQ(kIncomplete,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
}
loop++;
} while (loop < kMaxPacketsInSession);
// Max number of packets inserted.
// Insert one more packet.
seq_num_++;
packet_->is_first_packet_in_frame = false;
packet_->markerBit = true;
packet_->seqNum = seq_num_;
// Insert the packet -> frame recycled.
EXPECT_EQ(kSizeError, jitter_buffer_->InsertPacket(*packet_, &retransmitted));
EXPECT_TRUE(NULL == DecodeCompleteFrame());
}
TEST_F(TestBasicJitterBuffer, ExceedNumOfFrameWithSeqNumWrap) {
// TEST fill JB with more than max number of frame (50 delta frames +
// 51 key frames) with wrap in seq_num_
//
// --------------------------------------------------------------
// | 65485 | 65486 | 65487 | .... | 65535 | 0 | 1 | 2 | .....| 50 |
// --------------------------------------------------------------
// |<-----------delta frames------------->|<------key frames----->|
// Make sure the jitter doesn't request a keyframe after too much non-
// decodable frames.
jitter_buffer_->SetNackMode(kNack, -1, -1);
jitter_buffer_->SetNackSettings(kMaxNumberOfFrames, kMaxNumberOfFrames, 0);
int loop = 0;
seq_num_ = 65485;
uint32_t first_key_frame_timestamp = 0;
bool retransmitted = false;
// Insert MAX_NUMBER_OF_FRAMES frames.
do {
timestamp_ += 33 * 90;
seq_num_++;
packet_->is_first_packet_in_frame = true;
packet_->markerBit = true;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
if (loop == 50) {
first_key_frame_timestamp = packet_->timestamp;
packet_->frameType = kVideoFrameKey;
}
// Insert frame.
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
loop++;
} while (loop < kMaxNumberOfFrames);
// Max number of frames inserted.
// Insert one more frame.
timestamp_ += 33 * 90;
seq_num_++;
packet_->is_first_packet_in_frame = true;
packet_->markerBit = true;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
// Now, no free frame - frames will be recycled until first key frame.
EXPECT_EQ(kFlushIndicator,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
EXPECT_EQ(first_key_frame_timestamp, frame_out->Timestamp());
CheckOutFrame(frame_out, size_, false);
EXPECT_EQ(kVideoFrameKey, frame_out->FrameType());
jitter_buffer_->ReleaseFrame(frame_out);
}
TEST_F(TestBasicJitterBuffer, EmptyLastFrame) {
jitter_buffer_->SetDecodeErrorMode(kWithErrors);
seq_num_ = 3;
// Insert one empty packet per frame, should never return the last timestamp
// inserted. Only return empty frames in the presence of subsequent frames.
int maxSize = 1000;
bool retransmitted = false;
for (int i = 0; i < maxSize + 10; i++) {
timestamp_ += 33 * 90;
seq_num_++;
packet_->is_first_packet_in_frame = false;
packet_->markerBit = false;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
packet_->frameType = kEmptyFrame;
EXPECT_EQ(kNoError, jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* testFrame = DecodeIncompleteFrame();
// Timestamp should never be the last TS inserted.
if (testFrame != NULL) {
EXPECT_TRUE(testFrame->Timestamp() < timestamp_);
jitter_buffer_->ReleaseFrame(testFrame);
}
}
}
TEST_F(TestBasicJitterBuffer, H264IncompleteNalu) {
jitter_buffer_->SetNackMode(kNoNack, -1, -1);
jitter_buffer_->SetDecodeErrorMode(kWithErrors);
++seq_num_;
timestamp_ += 33 * 90;
int insertedLength = 0;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
packet_->frameType = kVideoFrameKey;
packet_->is_first_packet_in_frame = true;
packet_->completeNALU = kNaluStart;
packet_->markerBit = false;
bool retransmitted = false;
EXPECT_EQ(kDecodableSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
seq_num_ += 2; // Skip one packet.
packet_->seqNum = seq_num_;
packet_->frameType = kVideoFrameKey;
packet_->is_first_packet_in_frame = false;
packet_->completeNALU = kNaluIncomplete;
packet_->markerBit = false;
EXPECT_EQ(kDecodableSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
seq_num_++;
packet_->seqNum = seq_num_;
packet_->frameType = kVideoFrameKey;
packet_->is_first_packet_in_frame = false;
packet_->completeNALU = kNaluEnd;
packet_->markerBit = false;
EXPECT_EQ(kDecodableSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
seq_num_++;
packet_->seqNum = seq_num_;
packet_->completeNALU = kNaluComplete;
packet_->markerBit = true; // Last packet.
EXPECT_EQ(kDecodableSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
// The JB will only output (incomplete) frames if a packet belonging to a
// subsequent frame was already inserted. Insert one packet of a subsequent
// frame. place high timestamp so the JB would always have a next frame
// (otherwise, for every inserted frame we need to take care of the next
// frame as well).
packet_->seqNum = 1;
packet_->timestamp = timestamp_ + 33 * 90 * 10;
packet_->frameType = kVideoFrameDelta;
packet_->is_first_packet_in_frame = false;
packet_->completeNALU = kNaluStart;
packet_->markerBit = false;
EXPECT_EQ(kDecodableSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* frame_out = DecodeIncompleteFrame();
// We can decode everything from a NALU until a packet has been lost.
// Thus we can decode the first packet of the first NALU and the second NALU
// which consists of one packet.
CheckOutFrame(frame_out, packet_->sizeBytes * 2, false);
jitter_buffer_->ReleaseFrame(frame_out);
// Test reordered start frame + 1 lost.
seq_num_ += 2; // Re-order 1 frame.
timestamp_ += 33 * 90;
insertedLength = 0;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
packet_->frameType = kVideoFrameKey;
packet_->is_first_packet_in_frame = false;
packet_->completeNALU = kNaluEnd;
packet_->markerBit = false;
EXPECT_EQ(kDecodableSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
insertedLength += packet_->sizeBytes; // This packet should be decoded.
seq_num_--;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
packet_->frameType = kVideoFrameKey;
packet_->is_first_packet_in_frame = true;
packet_->completeNALU = kNaluStart;
packet_->markerBit = false;
EXPECT_EQ(kDecodableSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
insertedLength += packet_->sizeBytes; // This packet should be decoded.
seq_num_ += 3; // One packet drop.
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
packet_->frameType = kVideoFrameKey;
packet_->is_first_packet_in_frame = false;
packet_->completeNALU = kNaluComplete;
packet_->markerBit = false;
EXPECT_EQ(kDecodableSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
insertedLength += packet_->sizeBytes; // This packet should be decoded.
seq_num_++;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
packet_->frameType = kVideoFrameKey;
packet_->is_first_packet_in_frame = false;
packet_->completeNALU = kNaluStart;
packet_->markerBit = false;
EXPECT_EQ(kDecodableSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
// This packet should be decoded since it's the beginning of a NAL.
insertedLength += packet_->sizeBytes;
seq_num_ += 2;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
packet_->frameType = kVideoFrameKey;
packet_->is_first_packet_in_frame = false;
packet_->completeNALU = kNaluEnd;
packet_->markerBit = true;
EXPECT_EQ(kDecodableSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
// This packet should not be decoded because it is an incomplete NAL if it
// is the last.
frame_out = DecodeIncompleteFrame();
// Only last NALU is complete.
CheckOutFrame(frame_out, insertedLength, false);
jitter_buffer_->ReleaseFrame(frame_out);
// Test to insert empty packet.
seq_num_++;
timestamp_ += 33 * 90;
WebRtcRTPHeader rtpHeader;
memset(&rtpHeader, 0, sizeof(rtpHeader));
rtpHeader.video_header().codec = kVideoCodecGeneric;
VCMPacket emptypacket(data_, 0, rtpHeader);
emptypacket.seqNum = seq_num_;
emptypacket.timestamp = timestamp_;
emptypacket.frameType = kVideoFrameKey;
emptypacket.is_first_packet_in_frame = true;
emptypacket.completeNALU = kNaluComplete;
emptypacket.markerBit = true;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(emptypacket, &retransmitted));
// This packet should not be decoded because it is an incomplete NAL if it
// is the last.
// Will be sent to the decoder, as a packet belonging to a subsequent frame
// has arrived.
frame_out = DecodeIncompleteFrame();
EXPECT_TRUE(frame_out != NULL);
jitter_buffer_->ReleaseFrame(frame_out);
// Test that a frame can include an empty packet.
seq_num_++;
timestamp_ += 33 * 90;
packet_->seqNum = seq_num_;
packet_->timestamp = timestamp_;
packet_->frameType = kVideoFrameKey;
packet_->is_first_packet_in_frame = true;
packet_->completeNALU = kNaluComplete;
packet_->markerBit = false;
EXPECT_EQ(kDecodableSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
seq_num_++;
emptypacket.seqNum = seq_num_;
emptypacket.timestamp = timestamp_;
emptypacket.frameType = kVideoFrameKey;
emptypacket.is_first_packet_in_frame = true;
emptypacket.completeNALU = kNaluComplete;
emptypacket.markerBit = true;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(emptypacket, &retransmitted));
frame_out = DecodeCompleteFrame();
// Only last NALU is complete
CheckOutFrame(frame_out, packet_->sizeBytes, false);
jitter_buffer_->ReleaseFrame(frame_out);
}
TEST_F(TestBasicJitterBuffer, NextFrameWhenIncomplete) {
// Test that a we cannot get incomplete frames from the JB if we haven't
// received the marker bit, unless we have received a packet from a later
// timestamp.
jitter_buffer_->SetDecodeErrorMode(kWithErrors);
// Start with a complete key frame - insert and decode.
packet_->frameType = kVideoFrameKey;
packet_->is_first_packet_in_frame = true;
packet_->markerBit = true;
bool retransmitted = false;
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
VCMEncodedFrame* frame_out = DecodeCompleteFrame();
EXPECT_TRUE(frame_out != NULL);
jitter_buffer_->ReleaseFrame(frame_out);
packet_->seqNum += 2;
packet_->timestamp += 33 * 90;
packet_->frameType = kVideoFrameDelta;
packet_->is_first_packet_in_frame = false;
packet_->markerBit = false;
EXPECT_EQ(kDecodableSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
frame_out = DecodeIncompleteFrame();
EXPECT_TRUE(frame_out == NULL);
packet_->seqNum += 2;
packet_->timestamp += 33 * 90;
packet_->is_first_packet_in_frame = true;
EXPECT_EQ(kDecodableSession,
jitter_buffer_->InsertPacket(*packet_, &retransmitted));
frame_out = DecodeIncompleteFrame();
CheckOutFrame(frame_out, packet_->sizeBytes, false);
jitter_buffer_->ReleaseFrame(frame_out);
}
TEST_F(TestRunningJitterBuffer, Full) {
// Make sure the jitter doesn't request a keyframe after too much non-
// decodable frames.
jitter_buffer_->SetNackMode(kNack, -1, -1);
jitter_buffer_->SetNackSettings(kMaxNumberOfFrames, kMaxNumberOfFrames, 0);
// Insert a key frame and decode it.
EXPECT_GE(InsertFrame(kVideoFrameKey), kNoError);
EXPECT_TRUE(DecodeCompleteFrame());
DropFrame(1);
// Fill the jitter buffer.
EXPECT_GE(InsertFrames(kMaxNumberOfFrames, kVideoFrameDelta), kNoError);
// Make sure we can't decode these frames.
EXPECT_FALSE(DecodeCompleteFrame());
// This frame will make the jitter buffer recycle frames until a key frame.
// Since none is found it will have to wait until the next key frame before
// decoding.
EXPECT_EQ(kFlushIndicator, InsertFrame(kVideoFrameDelta));
EXPECT_FALSE(DecodeCompleteFrame());
}
TEST_F(TestRunningJitterBuffer, EmptyPackets) {
// Make sure a frame can get complete even though empty packets are missing.
stream_generator_->GenerateFrame(kVideoFrameKey, 3, 3,
clock_->TimeInMilliseconds());
bool request_key_frame = false;
// Insert empty packet.
EXPECT_EQ(kNoError, InsertPacketAndPop(4));
EXPECT_FALSE(request_key_frame);
// Insert 3 media packets.
EXPECT_EQ(kIncomplete, InsertPacketAndPop(0));
EXPECT_FALSE(request_key_frame);
EXPECT_EQ(kIncomplete, InsertPacketAndPop(0));
EXPECT_FALSE(request_key_frame);
EXPECT_EQ(kCompleteSession, InsertPacketAndPop(0));
EXPECT_FALSE(request_key_frame);
// Insert empty packet.
EXPECT_EQ(kCompleteSession, InsertPacketAndPop(0));
EXPECT_FALSE(request_key_frame);
}
TEST_F(TestRunningJitterBuffer, StatisticsTest) {
FrameCounts frame_stats(jitter_buffer_->FrameStatistics());
EXPECT_EQ(0, frame_stats.delta_frames);
EXPECT_EQ(0, frame_stats.key_frames);
uint32_t framerate = 0;
uint32_t bitrate = 0;
jitter_buffer_->IncomingRateStatistics(&framerate, &bitrate);
EXPECT_EQ(0u, framerate);
EXPECT_EQ(0u, bitrate);
// Insert a couple of key and delta frames.
InsertFrame(kVideoFrameKey);
InsertFrame(kVideoFrameDelta);
InsertFrame(kVideoFrameDelta);
InsertFrame(kVideoFrameKey);
InsertFrame(kVideoFrameDelta);
// Decode some of them to make sure the statistics doesn't depend on frames
// being decoded.
EXPECT_TRUE(DecodeCompleteFrame());
EXPECT_TRUE(DecodeCompleteFrame());
frame_stats = jitter_buffer_->FrameStatistics();
EXPECT_EQ(3, frame_stats.delta_frames);
EXPECT_EQ(2, frame_stats.key_frames);
// Insert 20 more frames to get estimates of bitrate and framerate over
// 1 second.
for (int i = 0; i < 20; ++i) {
InsertFrame(kVideoFrameDelta);
}
jitter_buffer_->IncomingRateStatistics(&framerate, &bitrate);
// TODO(holmer): The current implementation returns the average of the last
// two framerate calculations, which is why it takes two calls to reach the
// actual framerate. This should be fixed.
EXPECT_EQ(kDefaultFrameRate / 2u, framerate);
EXPECT_EQ(kDefaultBitrateKbps, bitrate);
// Insert 25 more frames to get estimates of bitrate and framerate over
// 2 seconds.
for (int i = 0; i < 25; ++i) {
InsertFrame(kVideoFrameDelta);
}
jitter_buffer_->IncomingRateStatistics(&framerate, &bitrate);
EXPECT_EQ(kDefaultFrameRate, framerate);
EXPECT_EQ(kDefaultBitrateKbps, bitrate);
}
TEST_F(TestRunningJitterBuffer, SkipToKeyFrame) {
// Insert delta frames.
EXPECT_GE(InsertFrames(5, kVideoFrameDelta), kNoError);
// Can't decode without a key frame.
EXPECT_FALSE(DecodeCompleteFrame());
InsertFrame(kVideoFrameKey);
// Skip to the next key frame.
EXPECT_TRUE(DecodeCompleteFrame());
}
TEST_F(TestRunningJitterBuffer, DontSkipToKeyFrameIfDecodable) {
InsertFrame(kVideoFrameKey);
EXPECT_TRUE(DecodeCompleteFrame());
const int kNumDeltaFrames = 5;
EXPECT_GE(InsertFrames(kNumDeltaFrames, kVideoFrameDelta), kNoError);
InsertFrame(kVideoFrameKey);
for (int i = 0; i < kNumDeltaFrames + 1; ++i) {
EXPECT_TRUE(DecodeCompleteFrame());
}
}
TEST_F(TestRunningJitterBuffer, KeyDeltaKeyDelta) {
InsertFrame(kVideoFrameKey);
EXPECT_TRUE(DecodeCompleteFrame());
const int kNumDeltaFrames = 5;
EXPECT_GE(InsertFrames(kNumDeltaFrames, kVideoFrameDelta), kNoError);
InsertFrame(kVideoFrameKey);
EXPECT_GE(InsertFrames(kNumDeltaFrames, kVideoFrameDelta), kNoError);
InsertFrame(kVideoFrameKey);
for (int i = 0; i < 2 * (kNumDeltaFrames + 1); ++i) {
EXPECT_TRUE(DecodeCompleteFrame());
}
}
TEST_F(TestRunningJitterBuffer, TwoPacketsNonContinuous) {
InsertFrame(kVideoFrameKey);
EXPECT_TRUE(DecodeCompleteFrame());
stream_generator_->GenerateFrame(kVideoFrameDelta, 1, 0,
clock_->TimeInMilliseconds());
clock_->AdvanceTimeMilliseconds(kDefaultFramePeriodMs);
stream_generator_->GenerateFrame(kVideoFrameDelta, 2, 0,
clock_->TimeInMilliseconds());
EXPECT_EQ(kIncomplete, InsertPacketAndPop(1));
EXPECT_EQ(kCompleteSession, InsertPacketAndPop(1));
EXPECT_FALSE(DecodeCompleteFrame());
EXPECT_EQ(kCompleteSession, InsertPacketAndPop(0));
EXPECT_TRUE(DecodeCompleteFrame());
EXPECT_TRUE(DecodeCompleteFrame());
}
TEST_F(TestJitterBufferNack, EmptyPackets) {
// Make sure empty packets doesn't clog the jitter buffer.
jitter_buffer_->SetNackMode(kNack, media_optimization::kLowRttNackMs, -1);
EXPECT_GE(InsertFrames(kMaxNumberOfFrames, kEmptyFrame), kNoError);
InsertFrame(kVideoFrameKey);
EXPECT_TRUE(DecodeCompleteFrame());
}
TEST_F(TestJitterBufferNack, NackTooOldPackets) {
// Insert a key frame and decode it.
EXPECT_GE(InsertFrame(kVideoFrameKey), kNoError);
EXPECT_TRUE(DecodeCompleteFrame());
// Drop one frame and insert |kNackHistoryLength| to trigger NACKing a too
// old packet.
DropFrame(1);
// Insert a frame which should trigger a recycle until the next key frame.
EXPECT_EQ(kFlushIndicator,
InsertFrames(oldest_packet_to_nack_ + 1, kVideoFrameDelta));
EXPECT_FALSE(DecodeCompleteFrame());
bool request_key_frame = false;
std::vector<uint16_t> nack_list =
jitter_buffer_->GetNackList(&request_key_frame);
// No key frame will be requested since the jitter buffer is empty.
EXPECT_FALSE(request_key_frame);
EXPECT_EQ(0u, nack_list.size());
EXPECT_GE(InsertFrame(kVideoFrameDelta), kNoError);
// Waiting for a key frame.
EXPECT_FALSE(DecodeCompleteFrame());
EXPECT_FALSE(DecodeIncompleteFrame());
// The next complete continuous frame isn't a key frame, but we're waiting
// for one.
EXPECT_FALSE(DecodeCompleteFrame());
EXPECT_GE(InsertFrame(kVideoFrameKey), kNoError);
// Skipping ahead to the key frame.
EXPECT_TRUE(DecodeCompleteFrame());
}
TEST_F(TestJitterBufferNack, NackLargeJitterBuffer) {
// Insert a key frame and decode it.
EXPECT_GE(InsertFrame(kVideoFrameKey), kNoError);
EXPECT_TRUE(DecodeCompleteFrame());
// Insert a frame which should trigger a recycle until the next key frame.
EXPECT_GE(InsertFrames(oldest_packet_to_nack_, kVideoFrameDelta), kNoError);
bool request_key_frame = false;
std::vector<uint16_t> nack_list =
jitter_buffer_->GetNackList(&request_key_frame);
// Verify that the jitter buffer does not request a key frame.
EXPECT_FALSE(request_key_frame);
// Verify that no packets are NACKed.
EXPECT_EQ(0u, nack_list.size());
// Verify that we can decode the next frame.
EXPECT_TRUE(DecodeCompleteFrame());
}
TEST_F(TestJitterBufferNack, NackListFull) {
// Insert a key frame and decode it.
EXPECT_GE(InsertFrame(kVideoFrameKey), kNoError);
EXPECT_TRUE(DecodeCompleteFrame());
// Generate and drop |kNackHistoryLength| packets to fill the NACK list.
DropFrame(max_nack_list_size_ + 1);
// Insert a frame which should trigger a recycle until the next key frame.
EXPECT_EQ(kFlushIndicator, InsertFrame(kVideoFrameDelta));
EXPECT_FALSE(DecodeCompleteFrame());
bool request_key_frame = false;
jitter_buffer_->GetNackList(&request_key_frame);
// The jitter buffer is empty, so we won't request key frames until we get a
// packet.
EXPECT_FALSE(request_key_frame);
EXPECT_GE(InsertFrame(kVideoFrameDelta), kNoError);
// Now we have a packet in the jitter buffer, a key frame will be requested
// since it's not a key frame.
jitter_buffer_->GetNackList(&request_key_frame);
// The jitter buffer is empty, so we won't request key frames until we get a
// packet.
EXPECT_TRUE(request_key_frame);
// The next complete continuous frame isn't a key frame, but we're waiting
// for one.
EXPECT_FALSE(DecodeCompleteFrame());
EXPECT_FALSE(DecodeIncompleteFrame());
EXPECT_GE(InsertFrame(kVideoFrameKey), kNoError);
// Skipping ahead to the key frame.
EXPECT_TRUE(DecodeCompleteFrame());
}
TEST_F(TestJitterBufferNack, NoNackListReturnedBeforeFirstDecode) {
DropFrame(10);
// Insert a frame and try to generate a NACK list. Shouldn't get one.
EXPECT_GE(InsertFrame(kVideoFrameDelta), kNoError);
bool request_key_frame = false;
std::vector<uint16_t> nack_list =
jitter_buffer_->GetNackList(&request_key_frame);
// No list generated, and a key frame request is signaled.
EXPECT_EQ(0u, nack_list.size());
EXPECT_TRUE(request_key_frame);
}
TEST_F(TestJitterBufferNack, NackListBuiltBeforeFirstDecode) {
stream_generator_->Init(0, clock_->TimeInMilliseconds());
InsertFrame(kVideoFrameKey);
stream_generator_->GenerateFrame(kVideoFrameDelta, 2, 0,
clock_->TimeInMilliseconds());
stream_generator_->NextPacket(NULL); // Drop packet.
EXPECT_EQ(kIncomplete, InsertPacketAndPop(0));
EXPECT_TRUE(DecodeCompleteFrame());
bool extended = false;
std::vector<uint16_t> nack_list = jitter_buffer_->GetNackList(&extended);
EXPECT_EQ(1u, nack_list.size());
}
TEST_F(TestJitterBufferNack, VerifyRetransmittedFlag) {
stream_generator_->Init(0, clock_->TimeInMilliseconds());
stream_generator_->GenerateFrame(kVideoFrameKey, 3, 0,
clock_->TimeInMilliseconds());
VCMPacket packet;
stream_generator_->PopPacket(&packet, 0);
bool retransmitted = false;
EXPECT_EQ(kIncomplete, jitter_buffer_->InsertPacket(packet, &retransmitted));
EXPECT_FALSE(retransmitted);
// Drop second packet.
stream_generator_->PopPacket(&packet, 1);
EXPECT_EQ(kIncomplete, jitter_buffer_->InsertPacket(packet, &retransmitted));
EXPECT_FALSE(retransmitted);
EXPECT_FALSE(DecodeCompleteFrame());
bool extended = false;
std::vector<uint16_t> nack_list = jitter_buffer_->GetNackList(&extended);
uint16_t seq_num;
EXPECT_EQ(1u, nack_list.size());
seq_num = nack_list[0];
stream_generator_->PopPacket(&packet, 0);
EXPECT_EQ(packet.seqNum, seq_num);
EXPECT_EQ(kCompleteSession,
jitter_buffer_->InsertPacket(packet, &retransmitted));
EXPECT_TRUE(retransmitted);
EXPECT_TRUE(DecodeCompleteFrame());
}
TEST_F(TestJitterBufferNack, UseNackToRecoverFirstKeyFrame) {
stream_generator_->Init(0, clock_->TimeInMilliseconds());
stream_generator_->GenerateFrame(kVideoFrameKey, 3, 0,
clock_->TimeInMilliseconds());
EXPECT_EQ(kIncomplete, InsertPacketAndPop(0));
// Drop second packet.
EXPECT_EQ(kIncomplete, InsertPacketAndPop(1));
EXPECT_FALSE(DecodeCompleteFrame());
bool extended = false;
std::vector<uint16_t> nack_list = jitter_buffer_->GetNackList(&extended);
uint16_t seq_num;
ASSERT_EQ(1u, nack_list.size());
seq_num = nack_list[0];
VCMPacket packet;
stream_generator_->GetPacket(&packet, 0);
EXPECT_EQ(packet.seqNum, seq_num);
}
TEST_F(TestJitterBufferNack, UseNackToRecoverFirstKeyFrameSecondInQueue) {
VCMPacket packet;
stream_generator_->Init(0, clock_->TimeInMilliseconds());
// First frame is delta.
stream_generator_->GenerateFrame(kVideoFrameDelta, 3, 0,
clock_->TimeInMilliseconds());
EXPECT_EQ(kIncomplete, InsertPacketAndPop(0));
// Drop second packet in frame.
ASSERT_TRUE(stream_generator_->PopPacket(&packet, 0));
EXPECT_EQ(kIncomplete, InsertPacketAndPop(0));
// Second frame is key.
stream_generator_->GenerateFrame(kVideoFrameKey, 3, 0,
clock_->TimeInMilliseconds() + 10);
EXPECT_EQ(kIncomplete, InsertPacketAndPop(0));
// Drop second packet in frame.
EXPECT_EQ(kIncomplete, InsertPacketAndPop(1));
EXPECT_FALSE(DecodeCompleteFrame());
bool extended = false;
std::vector<uint16_t> nack_list = jitter_buffer_->GetNackList(&extended);
uint16_t seq_num;
ASSERT_EQ(1u, nack_list.size());
seq_num = nack_list[0];
stream_generator_->GetPacket(&packet, 0);
EXPECT_EQ(packet.seqNum, seq_num);
}
TEST_F(TestJitterBufferNack, NormalOperation) {
EXPECT_EQ(kNack, jitter_buffer_->nack_mode());
jitter_buffer_->SetDecodeErrorMode(kWithErrors);
EXPECT_GE(InsertFrame(kVideoFrameKey), kNoError);
EXPECT_TRUE(DecodeIncompleteFrame());
// ----------------------------------------------------------------
// | 1 | 2 | .. | 8 | 9 | x | 11 | 12 | .. | 19 | x | 21 | .. | 100 |
// ----------------------------------------------------------------
stream_generator_->GenerateFrame(kVideoFrameKey, 100, 0,
clock_->TimeInMilliseconds());
clock_->AdvanceTimeMilliseconds(kDefaultFramePeriodMs);
EXPECT_EQ(kDecodableSession, InsertPacketAndPop(0));
// Verify that the frame is incomplete.
EXPECT_FALSE(DecodeCompleteFrame());
while (stream_generator_->PacketsRemaining() > 1) {
if (stream_generator_->NextSequenceNumber() % 10 != 0) {
EXPECT_EQ(kDecodableSession, InsertPacketAndPop(0));
} else {
stream_generator_->NextPacket(NULL); // Drop packet
}
}
EXPECT_EQ(kDecodableSession, InsertPacketAndPop(0));
EXPECT_EQ(0, stream_generator_->PacketsRemaining());
EXPECT_FALSE(DecodeCompleteFrame());
EXPECT_FALSE(DecodeIncompleteFrame());
bool request_key_frame = false;
// Verify the NACK list.
std::vector<uint16_t> nack_list =
jitter_buffer_->GetNackList(&request_key_frame);
const size_t kExpectedNackSize = 9;
ASSERT_EQ(kExpectedNackSize, nack_list.size());
for (size_t i = 0; i < nack_list.size(); ++i)
EXPECT_EQ((1 + i) * 10, nack_list[i]);
}
TEST_F(TestJitterBufferNack, NormalOperationWrap) {
bool request_key_frame = false;
// ------- ------------------------------------------------------------
// | 65532 | | 65533 | 65534 | 65535 | x | 1 | .. | 9 | x | 11 |.....| 96 |
// ------- ------------------------------------------------------------
stream_generator_->Init(65532, clock_->TimeInMilliseconds());
InsertFrame(kVideoFrameKey);
EXPECT_FALSE(request_key_frame);
EXPECT_TRUE(DecodeCompleteFrame());
stream_generator_->GenerateFrame(kVideoFrameDelta, 100, 0,
clock_->TimeInMilliseconds());
EXPECT_EQ(kIncomplete, InsertPacketAndPop(0));
while (stream_generator_->PacketsRemaining() > 1) {
if (stream_generator_->NextSequenceNumber() % 10 != 0) {
EXPECT_EQ(kIncomplete, InsertPacketAndPop(0));
EXPECT_FALSE(request_key_frame);
} else {
stream_generator_->NextPacket(NULL); // Drop packet
}
}
EXPECT_EQ(kIncomplete, InsertPacketAndPop(0));
EXPECT_FALSE(request_key_frame);
EXPECT_EQ(0, stream_generator_->PacketsRemaining());
EXPECT_FALSE(DecodeCompleteFrame());
EXPECT_FALSE(DecodeCompleteFrame());
bool extended = false;
std::vector<uint16_t> nack_list = jitter_buffer_->GetNackList(&extended);
// Verify the NACK list.
const size_t kExpectedNackSize = 10;
ASSERT_EQ(kExpectedNackSize, nack_list.size());
for (size_t i = 0; i < nack_list.size(); ++i)
EXPECT_EQ(i * 10, nack_list[i]);
}
TEST_F(TestJitterBufferNack, NormalOperationWrap2) {
bool request_key_frame = false;
// -----------------------------------
// | 65532 | 65533 | 65534 | x | 0 | 1 |
// -----------------------------------
stream_generator_->Init(65532, clock_->TimeInMilliseconds());
InsertFrame(kVideoFrameKey);
EXPECT_FALSE(request_key_frame);
EXPECT_TRUE(DecodeCompleteFrame());
stream_generator_->GenerateFrame(kVideoFrameDelta, 1, 0,
clock_->TimeInMilliseconds());
clock_->AdvanceTimeMilliseconds(kDefaultFramePeriodMs);
for (int i = 0; i < 5; ++i) {
if (stream_generator_->NextSequenceNumber() != 65535) {
EXPECT_EQ(kCompleteSession, InsertPacketAndPop(0));
EXPECT_FALSE(request_key_frame);
} else {
stream_generator_->NextPacket(NULL); // Drop packet
}
stream_generator_->GenerateFrame(kVideoFrameDelta, 1, 0,
clock_->TimeInMilliseconds());
clock_->AdvanceTimeMilliseconds(kDefaultFramePeriodMs);
}
EXPECT_EQ(kCompleteSession, InsertPacketAndPop(0));
EXPECT_FALSE(request_key_frame);
bool extended = false;
std::vector<uint16_t> nack_list = jitter_buffer_->GetNackList(&extended);
// Verify the NACK list.
ASSERT_EQ(1u, nack_list.size());
EXPECT_EQ(65535, nack_list[0]);
}
TEST_F(TestJitterBufferNack, ResetByFutureKeyFrameDoesntError) {
stream_generator_->Init(0, clock_->TimeInMilliseconds());
InsertFrame(kVideoFrameKey);
EXPECT_TRUE(DecodeCompleteFrame());
bool extended = false;
std::vector<uint16_t> nack_list = jitter_buffer_->GetNackList(&extended);
EXPECT_EQ(0u, nack_list.size());
// Far-into-the-future video frame, could be caused by resetting the encoder
// or otherwise restarting. This should not fail when error when the packet is
// a keyframe, even if all of the nack list needs to be flushed.
stream_generator_->Init(10000, clock_->TimeInMilliseconds());
clock_->AdvanceTimeMilliseconds(kDefaultFramePeriodMs);
InsertFrame(kVideoFrameKey);
EXPECT_TRUE(DecodeCompleteFrame());
nack_list = jitter_buffer_->GetNackList(&extended);
EXPECT_EQ(0u, nack_list.size());
// Stream should be decodable from this point.
clock_->AdvanceTimeMilliseconds(kDefaultFramePeriodMs);
InsertFrame(kVideoFrameDelta);
EXPECT_TRUE(DecodeCompleteFrame());
nack_list = jitter_buffer_->GetNackList(&extended);
EXPECT_EQ(0u, nack_list.size());
}
} // namespace webrtc