mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-16 07:10:38 +01:00

This CL adds the GainCurveApplier (GCA). It owns a FixedDigitalLevelEstimator (LE) and an InterpolatedGainCurve (IGC). The GCA uses the LE to compute the input signal level, looks up a gain from IGC and applies it on the signal. The other IGC and LE submodules were added in previous CLs [1] and [2]. This CL also turns on AGC2 in the APM fuzzer. [1] https://webrtc-review.googlesource.com/c/src/+/51920 [2] https://webrtc-review.googlesource.com/c/src/+/52381 Bug: webrtc:7949 Change-Id: Idb10cc3ca9d6d2e4ac5824cc3391ed8aa680f6cd Reviewed-on: https://webrtc-review.googlesource.com/54361 Commit-Queue: Alex Loiko <aleloi@webrtc.org> Reviewed-by: Sam Zackrisson <saza@webrtc.org> Cr-Commit-Position: refs/heads/master@{#22103}
190 lines
7 KiB
C++
190 lines
7 KiB
C++
/*
|
|
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/audio_processing/agc2/fixed_gain_controller.h"
|
|
|
|
#include "api/array_view.h"
|
|
#include "modules/audio_processing/agc2/agc2_testing_common.h"
|
|
#include "modules/audio_processing/agc2/vector_float_frame.h"
|
|
#include "modules/audio_processing/logging/apm_data_dumper.h"
|
|
#include "rtc_base/gunit.h"
|
|
#include "rtc_base/ptr_util.h"
|
|
|
|
namespace webrtc {
|
|
namespace {
|
|
|
|
constexpr float kInputLevelLinear = 15000.f;
|
|
|
|
constexpr float kGainToApplyDb = 15.f;
|
|
|
|
float RunFixedGainControllerWithConstantInput(FixedGainController* fixed_gc,
|
|
const float input_level,
|
|
const size_t num_frames,
|
|
const int sample_rate) {
|
|
// Give time to the level etimator to converge.
|
|
for (size_t i = 0; i < num_frames; ++i) {
|
|
VectorFloatFrame vectors_with_float_frame(
|
|
1, rtc::CheckedDivExact(sample_rate, 100), input_level);
|
|
fixed_gc->Process(vectors_with_float_frame.float_frame_view());
|
|
}
|
|
|
|
// Process the last frame with constant input level.
|
|
VectorFloatFrame vectors_with_float_frame_last(
|
|
1, rtc::CheckedDivExact(sample_rate, 100), input_level);
|
|
fixed_gc->Process(vectors_with_float_frame_last.float_frame_view());
|
|
|
|
// Return the last sample from the last processed frame.
|
|
const auto channel =
|
|
vectors_with_float_frame_last.float_frame_view().channel(0);
|
|
return channel[channel.size() - 1];
|
|
}
|
|
ApmDataDumper test_data_dumper(0);
|
|
|
|
std::unique_ptr<FixedGainController> CreateFixedGainController(
|
|
float gain_to_apply,
|
|
size_t rate,
|
|
bool enable_limiter) {
|
|
std::unique_ptr<FixedGainController> fgc =
|
|
rtc::MakeUnique<FixedGainController>(&test_data_dumper);
|
|
fgc->SetGain(gain_to_apply);
|
|
fgc->SetSampleRate(rate);
|
|
fgc->EnableLimiter(enable_limiter);
|
|
return fgc;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
TEST(AutomaticGainController2FixedDigital, CreateUseWithoutLimiter) {
|
|
const int kSampleRate = 48000;
|
|
std::unique_ptr<FixedGainController> fixed_gc =
|
|
CreateFixedGainController(kGainToApplyDb, kSampleRate, false);
|
|
VectorFloatFrame vectors_with_float_frame(
|
|
1, rtc::CheckedDivExact(kSampleRate, 100), kInputLevelLinear);
|
|
auto float_frame = vectors_with_float_frame.float_frame_view();
|
|
fixed_gc->Process(float_frame);
|
|
const auto channel = float_frame.channel(0);
|
|
EXPECT_LT(kInputLevelLinear, channel[0]);
|
|
}
|
|
|
|
TEST(AutomaticGainController2FixedDigital, CreateUseWithLimiter) {
|
|
const int kSampleRate = 44000;
|
|
std::unique_ptr<FixedGainController> fixed_gc =
|
|
CreateFixedGainController(kGainToApplyDb, kSampleRate, true);
|
|
VectorFloatFrame vectors_with_float_frame(
|
|
1, rtc::CheckedDivExact(kSampleRate, 100), kInputLevelLinear);
|
|
auto float_frame = vectors_with_float_frame.float_frame_view();
|
|
fixed_gc->Process(float_frame);
|
|
const auto channel = float_frame.channel(0);
|
|
EXPECT_LT(kInputLevelLinear, channel[0]);
|
|
}
|
|
|
|
TEST(AutomaticGainController2FixedDigital, CheckSaturationBehaviorWithLimiter) {
|
|
const float kInputLevel = 32767.f;
|
|
const size_t kNumFrames = 5;
|
|
const size_t kSampleRate = 42000;
|
|
|
|
const auto gains_no_saturation =
|
|
test::LinSpace(0.1, test::kLimiterMaxInputLevelDbFs - 0.01, 10);
|
|
for (const auto gain_db : gains_no_saturation) {
|
|
// Since |test::kLimiterMaxInputLevelDbFs| > |gain_db|, the
|
|
// limiter will not saturate the signal.
|
|
std::unique_ptr<FixedGainController> fixed_gc_no_saturation =
|
|
CreateFixedGainController(gain_db, kSampleRate, true);
|
|
|
|
// Saturation not expected.
|
|
SCOPED_TRACE(std::to_string(gain_db));
|
|
EXPECT_LT(
|
|
RunFixedGainControllerWithConstantInput(
|
|
fixed_gc_no_saturation.get(), kInputLevel, kNumFrames, kSampleRate),
|
|
32767.f);
|
|
}
|
|
|
|
const auto gains_saturation =
|
|
test::LinSpace(test::kLimiterMaxInputLevelDbFs + 0.01, 10, 10);
|
|
for (const auto gain_db : gains_saturation) {
|
|
// Since |test::kLimiterMaxInputLevelDbFs| < |gain|, the limiter
|
|
// will saturate the signal.
|
|
std::unique_ptr<FixedGainController> fixed_gc_saturation =
|
|
CreateFixedGainController(gain_db, kSampleRate, true);
|
|
|
|
// Saturation expected.
|
|
SCOPED_TRACE(std::to_string(gain_db));
|
|
EXPECT_FLOAT_EQ(
|
|
RunFixedGainControllerWithConstantInput(
|
|
fixed_gc_saturation.get(), kInputLevel, kNumFrames, kSampleRate),
|
|
32767.f);
|
|
}
|
|
}
|
|
|
|
TEST(AutomaticGainController2FixedDigital,
|
|
CheckSaturationBehaviorWithLimiterSingleSample) {
|
|
const float kInputLevel = 32767.f;
|
|
const size_t kNumFrames = 5;
|
|
const size_t kSampleRate = 8000;
|
|
|
|
const auto gains_no_saturation =
|
|
test::LinSpace(0.1, test::kLimiterMaxInputLevelDbFs - 0.01, 10);
|
|
for (const auto gain_db : gains_no_saturation) {
|
|
// Since |gain| > |test::kLimiterMaxInputLevelDbFs|, the limiter will
|
|
// not saturate the signal.
|
|
std::unique_ptr<FixedGainController> fixed_gc_no_saturation =
|
|
CreateFixedGainController(gain_db, kSampleRate, true);
|
|
|
|
// Saturation not expected.
|
|
SCOPED_TRACE(std::to_string(gain_db));
|
|
EXPECT_LT(
|
|
RunFixedGainControllerWithConstantInput(
|
|
fixed_gc_no_saturation.get(), kInputLevel, kNumFrames, kSampleRate),
|
|
32767.f);
|
|
}
|
|
|
|
const auto gains_saturation =
|
|
test::LinSpace(test::kLimiterMaxInputLevelDbFs + 0.01, 10, 10);
|
|
for (const auto gain_db : gains_saturation) {
|
|
// Singe |gain| < |test::kLimiterMaxInputLevelDbFs|, the limiter will
|
|
// saturate the signal.
|
|
std::unique_ptr<FixedGainController> fixed_gc_saturation =
|
|
CreateFixedGainController(gain_db, kSampleRate, true);
|
|
|
|
// Saturation expected.
|
|
SCOPED_TRACE(std::to_string(gain_db));
|
|
EXPECT_FLOAT_EQ(
|
|
RunFixedGainControllerWithConstantInput(
|
|
fixed_gc_saturation.get(), kInputLevel, kNumFrames, kSampleRate),
|
|
32767.f);
|
|
}
|
|
}
|
|
|
|
TEST(AutomaticGainController2FixedDigital, GainShouldChangeOnSetGain) {
|
|
constexpr float kInputLevel = 1000.f;
|
|
constexpr size_t kNumFrames = 5;
|
|
constexpr size_t kSampleRate = 8000;
|
|
constexpr float kGainDbNoChange = 0.f;
|
|
constexpr float kGainDbFactor10 = 20.f;
|
|
|
|
std::unique_ptr<FixedGainController> fixed_gc_no_saturation =
|
|
CreateFixedGainController(kGainDbNoChange, kSampleRate, false);
|
|
|
|
// Signal level is unchanged with 0 db gain.
|
|
EXPECT_FLOAT_EQ(
|
|
RunFixedGainControllerWithConstantInput(
|
|
fixed_gc_no_saturation.get(), kInputLevel, kNumFrames, kSampleRate),
|
|
kInputLevel);
|
|
|
|
fixed_gc_no_saturation->SetGain(kGainDbFactor10);
|
|
|
|
// +20db should increase signal by a factor of 10.
|
|
EXPECT_FLOAT_EQ(
|
|
RunFixedGainControllerWithConstantInput(
|
|
fixed_gc_no_saturation.get(), kInputLevel, kNumFrames, kSampleRate),
|
|
kInputLevel * 10);
|
|
}
|
|
|
|
} // namespace webrtc
|