mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-15 23:01:21 +01:00

This CL adds the GainCurveApplier (GCA). It owns a FixedDigitalLevelEstimator (LE) and an InterpolatedGainCurve (IGC). The GCA uses the LE to compute the input signal level, looks up a gain from IGC and applies it on the signal. The other IGC and LE submodules were added in previous CLs [1] and [2]. This CL also turns on AGC2 in the APM fuzzer. [1] https://webrtc-review.googlesource.com/c/src/+/51920 [2] https://webrtc-review.googlesource.com/c/src/+/52381 Bug: webrtc:7949 Change-Id: Idb10cc3ca9d6d2e4ac5824cc3391ed8aa680f6cd Reviewed-on: https://webrtc-review.googlesource.com/54361 Commit-Queue: Alex Loiko <aleloi@webrtc.org> Reviewed-by: Sam Zackrisson <saza@webrtc.org> Cr-Commit-Position: refs/heads/master@{#22103}
105 lines
4.1 KiB
C++
105 lines
4.1 KiB
C++
/*
|
|
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/audio_processing/agc2/interpolated_gain_curve.h"
|
|
|
|
#include "modules/audio_processing/agc2/agc2_common.h"
|
|
#include "modules/audio_processing/logging/apm_data_dumper.h"
|
|
#include "rtc_base/checks.h"
|
|
#include "rtc_base/logging.h"
|
|
|
|
namespace webrtc {
|
|
|
|
constexpr std::array<float, kInterpolatedGainCurveTotalPoints>
|
|
InterpolatedGainCurve::approximation_params_x_;
|
|
|
|
constexpr std::array<float, kInterpolatedGainCurveTotalPoints>
|
|
InterpolatedGainCurve::approximation_params_m_;
|
|
|
|
constexpr std::array<float, kInterpolatedGainCurveTotalPoints>
|
|
InterpolatedGainCurve::approximation_params_q_;
|
|
|
|
InterpolatedGainCurve::InterpolatedGainCurve(ApmDataDumper* apm_data_dumper)
|
|
: apm_data_dumper_(apm_data_dumper) {}
|
|
|
|
InterpolatedGainCurve::~InterpolatedGainCurve() {
|
|
if (stats_.available) {
|
|
// TODO(alessiob): We might want to add these stats as RTC metrics.
|
|
RTC_DCHECK(apm_data_dumper_);
|
|
apm_data_dumper_->DumpRaw("agc2_interp_gain_curve_lookups_identity",
|
|
stats_.look_ups_identity_region);
|
|
apm_data_dumper_->DumpRaw("agc2_interp_gain_curve_lookups_knee",
|
|
stats_.look_ups_knee_region);
|
|
apm_data_dumper_->DumpRaw("agc2_interp_gain_curve_lookups_limiter",
|
|
stats_.look_ups_limiter_region);
|
|
apm_data_dumper_->DumpRaw("agc2_interp_gain_curve_lookups_saturation",
|
|
stats_.look_ups_saturation_region);
|
|
}
|
|
}
|
|
|
|
void InterpolatedGainCurve::UpdateStats(float input_level) const {
|
|
stats_.available = true;
|
|
|
|
if (input_level < approximation_params_x_[0]) {
|
|
stats_.look_ups_identity_region++;
|
|
} else if (input_level <
|
|
approximation_params_x_[kInterpolatedGainCurveKneePoints - 1]) {
|
|
stats_.look_ups_knee_region++;
|
|
} else if (input_level < kMaxInputLevelLinear) {
|
|
stats_.look_ups_limiter_region++;
|
|
} else {
|
|
stats_.look_ups_saturation_region++;
|
|
}
|
|
}
|
|
|
|
// Looks up a gain to apply given a non-negative input level.
|
|
// The cost of this operation depends on the region in which |input_level|
|
|
// falls.
|
|
// For the identity and the saturation regions the cost is O(1).
|
|
// For the other regions, namely knee and limiter, the cost is
|
|
// O(2 + log2(|LightkInterpolatedGainCurveTotalPoints|), plus O(1) for the
|
|
// linear interpolation (one product and one sum).
|
|
float InterpolatedGainCurve::LookUpGainToApply(float input_level) const {
|
|
UpdateStats(input_level);
|
|
|
|
if (input_level <= approximation_params_x_[0]) {
|
|
// Identity region.
|
|
return 1.0f;
|
|
}
|
|
|
|
if (input_level >= kMaxInputLevelLinear) {
|
|
// Saturating lower bound. The saturing samples exactly hit the clipping
|
|
// level. This method achieves has the lowest harmonic distorsion, but it
|
|
// may reduce the amplitude of the non-saturating samples too much.
|
|
return 32768.f / input_level;
|
|
}
|
|
|
|
// Knee and limiter regions; find the linear piece index. Spelling
|
|
// out the complete type was the only way to silence both the clang
|
|
// plugin and the windows compilers.
|
|
std::array<float, kInterpolatedGainCurveTotalPoints>::const_iterator it =
|
|
std::lower_bound(approximation_params_x_.begin(),
|
|
approximation_params_x_.end(), input_level);
|
|
const size_t index = std::distance(approximation_params_x_.begin(), it) - 1;
|
|
RTC_DCHECK_LE(0, index);
|
|
RTC_DCHECK_LT(index, approximation_params_m_.size());
|
|
RTC_DCHECK_LE(approximation_params_x_[index], input_level);
|
|
if (index < approximation_params_m_.size() - 1) {
|
|
RTC_DCHECK_LE(input_level, approximation_params_x_[index + 1]);
|
|
}
|
|
|
|
// Piece-wise linear interploation.
|
|
const float gain = approximation_params_m_[index] * input_level +
|
|
approximation_params_q_[index];
|
|
RTC_DCHECK_LE(0.f, gain);
|
|
return gain;
|
|
}
|
|
|
|
} // namespace webrtc
|