webrtc/modules/audio_processing/aec3/aec3_fft_unittest.cc
Per Åhgren d20639f1f6 Correct the FFT windowing when computing the AEC NLP gain
This CL adds an nonwindowed spectrum of the linear filter error
to use in the NLP computation.

Bug: webrtc:8661
Change-Id: I45bc9bb3eb8eeac0c5d6adb414638eb12b635a27
Reviewed-on: https://webrtc-review.googlesource.com/38701
Reviewed-by: Gustaf Ullberg <gustaf@webrtc.org>
Commit-Queue: Per Åhgren <peah@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#21583}
2018-01-11 14:41:11 +00:00

212 lines
5.5 KiB
C++

/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/aec3_fft.h"
#include <algorithm>
#include "test/gmock.h"
#include "test/gtest.h"
namespace webrtc {
#if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID)
// Verifies that the check for non-null input in Fft works.
TEST(Aec3Fft, NullFftInput) {
Aec3Fft fft;
FftData X;
EXPECT_DEATH(fft.Fft(nullptr, &X), "");
}
// Verifies that the check for non-null input in Fft works.
TEST(Aec3Fft, NullFftOutput) {
Aec3Fft fft;
std::array<float, kFftLength> x;
EXPECT_DEATH(fft.Fft(&x, nullptr), "");
}
// Verifies that the check for non-null output in Ifft works.
TEST(Aec3Fft, NullIfftOutput) {
Aec3Fft fft;
FftData X;
EXPECT_DEATH(fft.Ifft(X, nullptr), "");
}
// Verifies that the check for non-null output in ZeroPaddedFft works.
TEST(Aec3Fft, NullZeroPaddedFftOutput) {
Aec3Fft fft;
std::array<float, kFftLengthBy2> x;
EXPECT_DEATH(fft.ZeroPaddedFft(x, Aec3Fft::Window::kRectangular, nullptr),
"");
}
// Verifies that the check for input length in ZeroPaddedFft works.
TEST(Aec3Fft, ZeroPaddedFftWrongInputLength) {
Aec3Fft fft;
FftData X;
std::array<float, kFftLengthBy2 - 1> x;
EXPECT_DEATH(fft.ZeroPaddedFft(x, Aec3Fft::Window::kRectangular, &X), "");
}
// Verifies that the check for non-null output in PaddedFft works.
TEST(Aec3Fft, NullPaddedFftOutput) {
Aec3Fft fft;
std::array<float, kFftLengthBy2> x;
std::array<float, kFftLengthBy2> x_old;
EXPECT_DEATH(fft.PaddedFft(x, x_old, nullptr), "");
}
// Verifies that the check for input length in PaddedFft works.
TEST(Aec3Fft, PaddedFftWrongInputLength) {
Aec3Fft fft;
FftData X;
std::array<float, kFftLengthBy2 - 1> x;
std::array<float, kFftLengthBy2> x_old;
EXPECT_DEATH(fft.PaddedFft(x, x_old, &X), "");
}
// Verifies that the check for length in the old value in PaddedFft works.
TEST(Aec3Fft, PaddedFftWrongOldValuesLength) {
Aec3Fft fft;
FftData X;
std::array<float, kFftLengthBy2> x;
std::array<float, kFftLengthBy2 - 1> x_old;
EXPECT_DEATH(fft.PaddedFft(x, x_old, &X), "");
}
#endif
// Verifies that Fft works as intended.
TEST(Aec3Fft, Fft) {
Aec3Fft fft;
FftData X;
std::array<float, kFftLength> x;
x.fill(0.f);
fft.Fft(&x, &X);
EXPECT_THAT(X.re, ::testing::Each(0.f));
EXPECT_THAT(X.im, ::testing::Each(0.f));
x.fill(0.f);
x[0] = 1.f;
fft.Fft(&x, &X);
EXPECT_THAT(X.re, ::testing::Each(1.f));
EXPECT_THAT(X.im, ::testing::Each(0.f));
x.fill(1.f);
fft.Fft(&x, &X);
EXPECT_EQ(128.f, X.re[0]);
std::for_each(X.re.begin() + 1, X.re.end(),
[](float a) { EXPECT_EQ(0.f, a); });
EXPECT_THAT(X.im, ::testing::Each(0.f));
}
// Verifies that InverseFft works as intended.
TEST(Aec3Fft, Ifft) {
Aec3Fft fft;
FftData X;
std::array<float, kFftLength> x;
X.re.fill(0.f);
X.im.fill(0.f);
fft.Ifft(X, &x);
EXPECT_THAT(x, ::testing::Each(0.f));
X.re.fill(1.f);
X.im.fill(0.f);
fft.Ifft(X, &x);
EXPECT_EQ(64.f, x[0]);
std::for_each(x.begin() + 1, x.end(), [](float a) { EXPECT_EQ(0.f, a); });
X.re.fill(0.f);
X.re[0] = 128;
X.im.fill(0.f);
fft.Ifft(X, &x);
EXPECT_THAT(x, ::testing::Each(64.f));
}
// Verifies that InverseFft and Fft work as intended.
TEST(Aec3Fft, FftAndIfft) {
Aec3Fft fft;
FftData X;
std::array<float, kFftLength> x;
std::array<float, kFftLength> x_ref;
int v = 0;
for (int k = 0; k < 20; ++k) {
for (size_t j = 0; j < x.size(); ++j) {
x[j] = v++;
x_ref[j] = x[j] * 64.f;
}
fft.Fft(&x, &X);
fft.Ifft(X, &x);
for (size_t j = 0; j < x.size(); ++j) {
EXPECT_NEAR(x_ref[j], x[j], 0.001f);
}
}
}
// Verifies that ZeroPaddedFft work as intended.
TEST(Aec3Fft, ZeroPaddedFft) {
Aec3Fft fft;
FftData X;
std::array<float, kFftLengthBy2> x_in;
std::array<float, kFftLength> x_ref;
std::array<float, kFftLength> x_out;
int v = 0;
x_ref.fill(0.f);
for (int k = 0; k < 20; ++k) {
for (size_t j = 0; j < x_in.size(); ++j) {
x_in[j] = v++;
x_ref[j + kFftLengthBy2] = x_in[j] * 64.f;
}
fft.ZeroPaddedFft(x_in, Aec3Fft::Window::kRectangular, &X);
fft.Ifft(X, &x_out);
for (size_t j = 0; j < x_out.size(); ++j) {
EXPECT_NEAR(x_ref[j], x_out[j], 0.1f);
}
}
}
// Verifies that ZeroPaddedFft work as intended.
TEST(Aec3Fft, PaddedFft) {
Aec3Fft fft;
FftData X;
std::array<float, kFftLengthBy2> x_in;
std::array<float, kFftLength> x_out;
std::array<float, kFftLengthBy2> x_old;
std::array<float, kFftLengthBy2> x_old_ref;
std::array<float, kFftLength> x_ref;
int v = 0;
x_old.fill(0.f);
for (int k = 0; k < 20; ++k) {
for (size_t j = 0; j < x_in.size(); ++j) {
x_in[j] = v++;
}
std::copy(x_old.begin(), x_old.end(), x_ref.begin());
std::copy(x_in.begin(), x_in.end(), x_ref.begin() + kFftLengthBy2);
std::copy(x_in.begin(), x_in.end(), x_old_ref.begin());
std::for_each(x_ref.begin(), x_ref.end(), [](float& a) { a *= 64.f; });
fft.PaddedFft(x_in, x_old, &X);
fft.Ifft(X, &x_out);
for (size_t j = 0; j < x_out.size(); ++j) {
EXPECT_NEAR(x_ref[j], x_out[j], 0.1f);
}
EXPECT_EQ(x_old_ref, x_old);
}
}
} // namespace webrtc