webrtc/modules/audio_processing/aec3/aec_state_unittest.cc
Per Åhgren 3ab308f869 Inform the AEC3 echo remover about the status of the estimated delay
This CL adds functionality for passing the information about the
estimated delay to the echo remover in AEC3.
The CL also adds information about how long ago the delay changed,
and how long ago the delay estimate was updated.

Bug: webrtc:8671
Change-Id: If274ffe0465eb550f3e186d0599c6dc6fef7f5e8
Reviewed-on: https://webrtc-review.googlesource.com/55261
Reviewed-by: Gustaf Ullberg <gustaf@webrtc.org>
Commit-Queue: Per Åhgren <peah@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#22137}
2018-02-21 17:08:36 +00:00

219 lines
8.2 KiB
C++

/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/aec_state.h"
#include "modules/audio_processing/aec3/aec3_fft.h"
#include "modules/audio_processing/aec3/render_delay_buffer.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "test/gtest.h"
namespace webrtc {
// Verify the general functionality of AecState
TEST(AecState, NormalUsage) {
ApmDataDumper data_dumper(42);
EchoCanceller3Config config;
AecState state(config);
rtc::Optional<DelayEstimate> delay_estimate;
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
RenderDelayBuffer::Create(config, 3));
std::array<float, kFftLengthBy2Plus1> E2_main = {};
std::array<float, kFftLengthBy2Plus1> Y2 = {};
std::vector<std::vector<float>> x(3, std::vector<float>(kBlockSize, 0.f));
EchoPathVariability echo_path_variability(
false, EchoPathVariability::DelayAdjustment::kNone, false);
std::array<float, kBlockSize> s;
Aec3Fft fft;
s.fill(100.f);
std::vector<std::array<float, kFftLengthBy2Plus1>>
converged_filter_frequency_response(10);
for (auto& v : converged_filter_frequency_response) {
v.fill(0.01f);
}
std::vector<std::array<float, kFftLengthBy2Plus1>>
diverged_filter_frequency_response = converged_filter_frequency_response;
converged_filter_frequency_response[2].fill(100.f);
converged_filter_frequency_response[2][0] = 1.f;
std::vector<float> impulse_response(
GetTimeDomainLength(config.filter.main.length_blocks), 0.f);
// Verify that linear AEC usability is false when the filter is diverged.
state.Update(delay_estimate, diverged_filter_frequency_response,
impulse_response, true, *render_delay_buffer->GetRenderBuffer(),
E2_main, Y2, s, false);
EXPECT_FALSE(state.UsableLinearEstimate());
// Verify that linear AEC usability is true when the filter is converged
std::fill(x[0].begin(), x[0].end(), 101.f);
for (int k = 0; k < 3000; ++k) {
render_delay_buffer->Insert(x);
state.Update(
delay_estimate, converged_filter_frequency_response, impulse_response,
true, *render_delay_buffer->GetRenderBuffer(), E2_main, Y2, s, false);
}
EXPECT_TRUE(state.UsableLinearEstimate());
// Verify that linear AEC usability becomes false after an echo path change is
// reported
state.HandleEchoPathChange(EchoPathVariability(
true, EchoPathVariability::DelayAdjustment::kNone, false));
state.Update(delay_estimate, converged_filter_frequency_response,
impulse_response, true, *render_delay_buffer->GetRenderBuffer(),
E2_main, Y2, s, false);
EXPECT_FALSE(state.UsableLinearEstimate());
// Verify that the active render detection works as intended.
std::fill(x[0].begin(), x[0].end(), 101.f);
render_delay_buffer->Insert(x);
state.HandleEchoPathChange(EchoPathVariability(
true, EchoPathVariability::DelayAdjustment::kNewDetectedDelay, false));
state.Update(delay_estimate, converged_filter_frequency_response,
impulse_response, true, *render_delay_buffer->GetRenderBuffer(),
E2_main, Y2, s, false);
EXPECT_FALSE(state.ActiveRender());
for (int k = 0; k < 1000; ++k) {
render_delay_buffer->Insert(x);
state.Update(
delay_estimate, converged_filter_frequency_response, impulse_response,
true, *render_delay_buffer->GetRenderBuffer(), E2_main, Y2, s, false);
}
EXPECT_TRUE(state.ActiveRender());
// Verify that echo leakage is properly reported.
state.Update(delay_estimate, converged_filter_frequency_response,
impulse_response, true, *render_delay_buffer->GetRenderBuffer(),
E2_main, Y2, s, false);
EXPECT_FALSE(state.EchoLeakageDetected());
state.Update(delay_estimate, converged_filter_frequency_response,
impulse_response, true, *render_delay_buffer->GetRenderBuffer(),
E2_main, Y2, s, true);
EXPECT_TRUE(state.EchoLeakageDetected());
// Verify that the ERL is properly estimated
for (auto& x_k : x) {
x_k = std::vector<float>(kBlockSize, 0.f);
}
x[0][0] = 5000.f;
for (size_t k = 0;
k < render_delay_buffer->GetRenderBuffer()->GetFftBuffer().size(); ++k) {
render_delay_buffer->Insert(x);
if (k == 0) {
render_delay_buffer->Reset();
}
render_delay_buffer->PrepareCaptureProcessing();
}
Y2.fill(10.f * 10000.f * 10000.f);
for (size_t k = 0; k < 1000; ++k) {
state.Update(
delay_estimate, converged_filter_frequency_response, impulse_response,
true, *render_delay_buffer->GetRenderBuffer(), E2_main, Y2, s, false);
}
ASSERT_TRUE(state.UsableLinearEstimate());
const std::array<float, kFftLengthBy2Plus1>& erl = state.Erl();
EXPECT_EQ(erl[0], erl[1]);
for (size_t k = 1; k < erl.size() - 1; ++k) {
EXPECT_NEAR(k % 2 == 0 ? 10.f : 1000.f, erl[k], 0.1);
}
EXPECT_EQ(erl[erl.size() - 2], erl[erl.size() - 1]);
// Verify that the ERLE is properly estimated
E2_main.fill(1.f * 10000.f * 10000.f);
Y2.fill(10.f * E2_main[0]);
for (size_t k = 0; k < 1000; ++k) {
state.Update(
delay_estimate, converged_filter_frequency_response, impulse_response,
true, *render_delay_buffer->GetRenderBuffer(), E2_main, Y2, s, false);
}
ASSERT_TRUE(state.UsableLinearEstimate());
{
const auto& erle = state.Erle();
EXPECT_EQ(erle[0], erle[1]);
constexpr size_t kLowFrequencyLimit = 32;
for (size_t k = 1; k < kLowFrequencyLimit; ++k) {
EXPECT_NEAR(k % 2 == 0 ? 8.f : 1.f, erle[k], 0.1);
}
for (size_t k = kLowFrequencyLimit; k < erle.size() - 1; ++k) {
EXPECT_NEAR(k % 2 == 0 ? 1.5f : 1.f, erle[k], 0.1);
}
EXPECT_EQ(erle[erle.size() - 2], erle[erle.size() - 1]);
}
E2_main.fill(1.f * 10000.f * 10000.f);
Y2.fill(5.f * E2_main[0]);
for (size_t k = 0; k < 1000; ++k) {
state.Update(
delay_estimate, converged_filter_frequency_response, impulse_response,
true, *render_delay_buffer->GetRenderBuffer(), E2_main, Y2, s, false);
}
ASSERT_TRUE(state.UsableLinearEstimate());
{
const auto& erle = state.Erle();
EXPECT_EQ(erle[0], erle[1]);
constexpr size_t kLowFrequencyLimit = 32;
for (size_t k = 1; k < kLowFrequencyLimit; ++k) {
EXPECT_NEAR(k % 2 == 0 ? 5.f : 1.f, erle[k], 0.1);
}
for (size_t k = kLowFrequencyLimit; k < erle.size() - 1; ++k) {
EXPECT_NEAR(k % 2 == 0 ? 1.5f : 1.f, erle[k], 0.1);
}
EXPECT_EQ(erle[erle.size() - 2], erle[erle.size() - 1]);
}
}
// Verifies the delay for a converged filter is correctly identified.
TEST(AecState, ConvergedFilterDelay) {
constexpr int kFilterLength = 10;
EchoCanceller3Config config;
AecState state(config);
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
RenderDelayBuffer::Create(config, 3));
rtc::Optional<DelayEstimate> delay_estimate;
std::array<float, kFftLengthBy2Plus1> E2_main;
std::array<float, kFftLengthBy2Plus1> Y2;
std::array<float, kBlockSize> x;
EchoPathVariability echo_path_variability(
false, EchoPathVariability::DelayAdjustment::kNone, false);
std::array<float, kBlockSize> s;
s.fill(100.f);
x.fill(0.f);
std::vector<std::array<float, kFftLengthBy2Plus1>> frequency_response(
kFilterLength);
std::vector<float> impulse_response(
GetTimeDomainLength(config.filter.main.length_blocks), 0.f);
// Verify that the filter delay for a converged filter is properly identified.
for (int k = 0; k < kFilterLength; ++k) {
for (auto& v : frequency_response) {
v.fill(0.01f);
}
frequency_response[k].fill(100.f);
frequency_response[k][0] = 0.f;
state.HandleEchoPathChange(echo_path_variability);
state.Update(delay_estimate, frequency_response, impulse_response, true,
*render_delay_buffer->GetRenderBuffer(), E2_main, Y2, s,
false);
if (k != (kFilterLength - 1)) {
EXPECT_EQ(k, state.FilterDelay());
}
}
}
} // namespace webrtc