webrtc/modules/audio_processing/aec3/residual_echo_estimator.cc
Per Åhgren 29f14322d1 Improved robustness and recovery speed in AEC3 during echo path changes
This CL adds robustness in terms of echo removal and faster recovery
in order to regain echo canceller transparency after echo path changes.

The CL does:
-Improve the adaptation rate of the linear filter.
-Increase the look-window used before the linear filter has adapted.
-Decrease the effects of missed detection of residual echo.
-Increase the safety margin before allowing the suppressor gain to
increase.

Bug: chromium:804873,webrtc:8788
Change-Id: I28eedc4c8d0a4f0bc7b79c02d6d59bf00fddd566
Reviewed-on: https://webrtc-review.googlesource.com/48721
Commit-Queue: Per Åhgren <peah@webrtc.org>
Reviewed-by: Gustaf Ullberg <gustaf@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#21917}
2018-02-06 15:07:54 +00:00

264 lines
9.5 KiB
C++

/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/residual_echo_estimator.h"
#include <numeric>
#include <vector>
#include "rtc_base/checks.h"
namespace webrtc {
namespace {
// Estimates the echo generating signal power as gated maximal power over a time
// window.
void EchoGeneratingPower(const RenderBuffer& render_buffer,
size_t min_delay,
size_t max_delay,
std::array<float, kFftLengthBy2Plus1>* X2) {
X2->fill(0.f);
for (size_t k = min_delay; k <= max_delay; ++k) {
std::transform(X2->begin(), X2->end(), render_buffer.Spectrum(k).begin(),
X2->begin(),
[](float a, float b) { return std::max(a, b); });
}
// Apply soft noise gate of -78 dBFS.
static constexpr float kNoiseGatePower = 27509.42f;
std::for_each(X2->begin(), X2->end(), [](float& a) {
if (kNoiseGatePower > a) {
a = std::max(0.f, a - 0.3f * (kNoiseGatePower - a));
}
});
}
constexpr int kNoiseFloorCounterMax = 50;
constexpr float kNoiseFloorMin = 10.f * 10.f * 128.f * 128.f;
// Updates estimate for the power of the stationary noise component in the
// render signal.
void RenderNoisePower(
const RenderBuffer& render_buffer,
std::array<float, kFftLengthBy2Plus1>* X2_noise_floor,
std::array<int, kFftLengthBy2Plus1>* X2_noise_floor_counter) {
RTC_DCHECK(X2_noise_floor);
RTC_DCHECK(X2_noise_floor_counter);
const auto render_power = render_buffer.Spectrum(0);
RTC_DCHECK_EQ(X2_noise_floor->size(), render_power.size());
RTC_DCHECK_EQ(X2_noise_floor_counter->size(), render_power.size());
// Estimate the stationary noise power in a minimum statistics manner.
for (size_t k = 0; k < render_power.size(); ++k) {
// Decrease rapidly.
if (render_power[k] < (*X2_noise_floor)[k]) {
(*X2_noise_floor)[k] = render_power[k];
(*X2_noise_floor_counter)[k] = 0;
} else {
// Increase in a delayed, leaky manner.
if ((*X2_noise_floor_counter)[k] >= kNoiseFloorCounterMax) {
(*X2_noise_floor)[k] =
std::max((*X2_noise_floor)[k] * 1.1f, kNoiseFloorMin);
} else {
++(*X2_noise_floor_counter)[k];
}
}
}
}
} // namespace
ResidualEchoEstimator::ResidualEchoEstimator(const EchoCanceller3Config& config)
: config_(config), S2_old_(config_.filter.main.length_blocks) {
Reset();
}
ResidualEchoEstimator::~ResidualEchoEstimator() = default;
void ResidualEchoEstimator::Estimate(
const AecState& aec_state,
const RenderBuffer& render_buffer,
const std::array<float, kFftLengthBy2Plus1>& S2_linear,
const std::array<float, kFftLengthBy2Plus1>& Y2,
std::array<float, kFftLengthBy2Plus1>* R2) {
RTC_DCHECK(R2);
// Estimate the power of the stationary noise in the render signal.
RenderNoisePower(render_buffer, &X2_noise_floor_, &X2_noise_floor_counter_);
// Estimate the residual echo power.
if (aec_state.UsableLinearEstimate()) {
LinearEstimate(S2_linear, aec_state.Erle(), aec_state.FilterDelay(), R2);
AddEchoReverb(S2_linear, aec_state.SaturatedEcho(), aec_state.FilterDelay(),
aec_state.ReverbDecay(), R2);
// If the echo is saturated, estimate the echo power as the maximum echo
// power with a leakage factor.
if (aec_state.SaturatedEcho()) {
R2->fill((*std::max_element(R2->begin(), R2->end())) * 100.f);
}
} else {
// Estimate the echo generating signal power.
std::array<float, kFftLengthBy2Plus1> X2;
// Computes the spectral power over the blocks surrounding the delay.
EchoGeneratingPower(render_buffer, std::max(0, aec_state.FilterDelay() - 1),
aec_state.FilterDelay() + 10, &X2);
// Subtract the stationary noise power to avoid stationary noise causing
// excessive echo suppression.
std::transform(
X2.begin(), X2.end(), X2_noise_floor_.begin(), X2.begin(),
[](float a, float b) { return std::max(0.f, a - 10.f * b); });
NonLinearEstimate(aec_state.FilterHasHadTimeToConverge(),
aec_state.SaturatedEcho(),
config_.ep_strength.bounded_erl,
aec_state.TransparentMode(), X2, Y2, R2);
if (aec_state.SaturatedEcho()) {
// TODO(peah): Modify to make sense theoretically.
AddEchoReverb(*R2, aec_state.SaturatedEcho(),
config_.filter.main.length_blocks, aec_state.ReverbDecay(),
R2);
}
}
// If the echo is deemed inaudible, set the residual echo to zero.
if (aec_state.InaudibleEcho()) {
R2->fill(0.f);
R2_old_.fill(0.f);
R2_hold_counter_.fill(0.f);
}
std::copy(R2->begin(), R2->end(), R2_old_.begin());
}
void ResidualEchoEstimator::Reset() {
X2_noise_floor_counter_.fill(kNoiseFloorCounterMax);
X2_noise_floor_.fill(kNoiseFloorMin);
R2_reverb_.fill(0.f);
R2_old_.fill(0.f);
R2_hold_counter_.fill(0.f);
for (auto& S2_k : S2_old_) {
S2_k.fill(0.f);
}
}
void ResidualEchoEstimator::LinearEstimate(
const std::array<float, kFftLengthBy2Plus1>& S2_linear,
const std::array<float, kFftLengthBy2Plus1>& erle,
size_t delay,
std::array<float, kFftLengthBy2Plus1>* R2) {
std::fill(R2_hold_counter_.begin(), R2_hold_counter_.end(), 10.f);
std::transform(erle.begin(), erle.end(), S2_linear.begin(), R2->begin(),
[](float a, float b) {
RTC_DCHECK_LT(0.f, a);
return b / a;
});
}
void ResidualEchoEstimator::NonLinearEstimate(
bool sufficient_filter_updates,
bool saturated_echo,
bool bounded_erl,
bool transparent_mode,
const std::array<float, kFftLengthBy2Plus1>& X2,
const std::array<float, kFftLengthBy2Plus1>& Y2,
std::array<float, kFftLengthBy2Plus1>* R2) {
float echo_path_gain_lf;
float echo_path_gain_mf;
float echo_path_gain_hf;
// Set echo path gains.
if (saturated_echo) {
// If the echo could be saturated, use a very conservative gain.
echo_path_gain_lf = echo_path_gain_mf = echo_path_gain_hf = 10000.f;
} else if (sufficient_filter_updates && !bounded_erl) {
// If the filter should have been able to converge, and no assumption is
// possible on the ERL, use a low gain.
echo_path_gain_lf = echo_path_gain_mf = echo_path_gain_hf = 0.01f;
} else if ((sufficient_filter_updates && bounded_erl) || transparent_mode) {
// If the filter should have been able to converge, and and it is known that
// the ERL is bounded, use a very low gain.
echo_path_gain_lf = echo_path_gain_mf = echo_path_gain_hf = 0.001f;
} else {
// In the initial state, use conservative gains.
echo_path_gain_lf = config_.ep_strength.lf;
echo_path_gain_mf = config_.ep_strength.mf;
echo_path_gain_hf = config_.ep_strength.hf;
}
// Compute preliminary residual echo.
std::transform(
X2.begin(), X2.begin() + 12, R2->begin(),
[echo_path_gain_lf](float a) { return a * echo_path_gain_lf; });
std::transform(
X2.begin() + 12, X2.begin() + 25, R2->begin() + 12,
[echo_path_gain_mf](float a) { return a * echo_path_gain_mf; });
std::transform(
X2.begin() + 25, X2.end(), R2->begin() + 25,
[echo_path_gain_hf](float a) { return a * echo_path_gain_hf; });
for (size_t k = 0; k < R2->size(); ++k) {
// Update hold counter.
R2_hold_counter_[k] = R2_old_[k] < (*R2)[k] ? 0 : R2_hold_counter_[k] + 1;
// Compute the residual echo by holding a maximum echo powers and an echo
// fading corresponding to a room with an RT60 value of about 50 ms.
(*R2)[k] = R2_hold_counter_[k] < 2
? std::max((*R2)[k], R2_old_[k])
: std::min((*R2)[k] + R2_old_[k] * 0.1f, Y2[k]);
}
}
void ResidualEchoEstimator::AddEchoReverb(
const std::array<float, kFftLengthBy2Plus1>& S2,
bool saturated_echo,
size_t delay,
float reverb_decay_factor,
std::array<float, kFftLengthBy2Plus1>* R2) {
// Compute the decay factor for how much the echo has decayed before leaving
// the region covered by the linear model.
auto integer_power = [](float base, int exp) {
float result = 1.f;
for (int k = 0; k < exp; ++k) {
result *= base;
}
return result;
};
RTC_DCHECK_LE(delay, S2_old_.size());
const float reverb_decay_for_delay =
integer_power(reverb_decay_factor, S2_old_.size() - delay);
// Update the estimate of the reverberant residual echo power.
S2_old_index_ = S2_old_index_ > 0 ? S2_old_index_ - 1 : S2_old_.size() - 1;
const auto& S2_end = S2_old_[S2_old_index_];
std::transform(
S2_end.begin(), S2_end.end(), R2_reverb_.begin(), R2_reverb_.begin(),
[reverb_decay_for_delay, reverb_decay_factor](float a, float b) {
return (b + a * reverb_decay_for_delay) * reverb_decay_factor;
});
// Update the buffer of old echo powers.
if (saturated_echo) {
S2_old_[S2_old_index_].fill((*std::max_element(S2.begin(), S2.end())) *
100.f);
} else {
std::copy(S2.begin(), S2.end(), S2_old_[S2_old_index_].begin());
}
// Add the power of the echo reverb to the residual echo power.
std::transform(R2->begin(), R2->end(), R2_reverb_.begin(), R2->begin(),
std::plus<float>());
}
} // namespace webrtc