webrtc/modules/audio_coding/neteq/decision_logic.cc
Jakob Ivarsson adfc1601c1 Rewrite NetEq stable delay mode.
The goal is to reduce the amount of time stretching done in response
to network jitter. Specifically, we should be able to “ride” over delay
spikes if the current delay is sufficient, without decelerating
playout. We should also avoid accelerating immediately after a buffer
underrun, until we are reasonably sure that the jitter has passed.
This is achieved by increasing the deadband where we choose to do
normal playout, based on the maximum delay in the short term packet
arrival history.

The buffer level filter is still used to report the average delay for
A/V sync purposes.

The new behavior is behind a flag and will be experimented with before
it is made default.

Bug: webrtc:13322
Change-Id: I5fba0c9d46d835dbe5401669598fa031512ccced
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/299500
Reviewed-by: Henrik Lundin <henrik.lundin@webrtc.org>
Commit-Queue: Jakob Ivarsson‎ <jakobi@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#39730}
2023-03-31 14:47:55 +00:00

467 lines
17 KiB
C++

/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_coding/neteq/decision_logic.h"
#include <stdio.h>
#include <cstdint>
#include <memory>
#include <string>
#include "absl/types/optional.h"
#include "api/neteq/neteq.h"
#include "api/neteq/neteq_controller.h"
#include "modules/audio_coding/neteq/packet_arrival_history.h"
#include "modules/audio_coding/neteq/packet_buffer.h"
#include "rtc_base/checks.h"
#include "rtc_base/experiments/field_trial_parser.h"
#include "rtc_base/experiments/struct_parameters_parser.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "system_wrappers/include/field_trial.h"
namespace webrtc {
namespace {
constexpr int kPostponeDecodingLevel = 50;
constexpr int kTargetLevelWindowMs = 100;
constexpr int kMaxWaitForPacketMs = 100;
// The granularity of delay adjustments (accelerate/preemptive expand) is 15ms,
// but round up since the clock has a granularity of 10ms.
constexpr int kDelayAdjustmentGranularityMs = 20;
constexpr int kReinitAfterExpandsMs = 1000;
std::unique_ptr<DelayManager> CreateDelayManager(
const NetEqController::Config& neteq_config) {
DelayManager::Config config;
config.max_packets_in_buffer = neteq_config.max_packets_in_buffer;
config.base_minimum_delay_ms = neteq_config.base_min_delay_ms;
config.Log();
return std::make_unique<DelayManager>(config, neteq_config.tick_timer);
}
bool IsTimestretch(NetEq::Mode mode) {
return mode == NetEq::Mode::kAccelerateSuccess ||
mode == NetEq::Mode::kAccelerateLowEnergy ||
mode == NetEq::Mode::kPreemptiveExpandSuccess ||
mode == NetEq::Mode::kPreemptiveExpandLowEnergy;
}
bool IsCng(NetEq::Mode mode) {
return mode == NetEq::Mode::kRfc3389Cng ||
mode == NetEq::Mode::kCodecInternalCng;
}
bool IsExpand(NetEq::Mode mode) {
return mode == NetEq::Mode::kExpand || mode == NetEq::Mode::kCodecPlc;
}
} // namespace
DecisionLogic::Config::Config() {
StructParametersParser::Create(
"enable_stable_delay_mode", &enable_stable_delay_mode, //
"combine_concealment_decision", &combine_concealment_decision, //
"packet_history_size_ms", &packet_history_size_ms, //
"cng_timeout_ms", &cng_timeout_ms, //
"deceleration_target_level_offset_ms",
&deceleration_target_level_offset_ms)
->Parse(webrtc::field_trial::FindFullName(
"WebRTC-Audio-NetEqDecisionLogicConfig"));
RTC_LOG(LS_INFO) << "NetEq decision logic config:"
<< " enable_stable_delay_mode=" << enable_stable_delay_mode
<< " combine_concealment_decision="
<< combine_concealment_decision
<< " packet_history_size_ms=" << packet_history_size_ms
<< " cng_timeout_ms=" << cng_timeout_ms.value_or(-1)
<< " deceleration_target_level_offset_ms="
<< deceleration_target_level_offset_ms;
}
DecisionLogic::DecisionLogic(NetEqController::Config config)
: DecisionLogic(config,
CreateDelayManager(config),
std::make_unique<BufferLevelFilter>()) {}
DecisionLogic::DecisionLogic(
NetEqController::Config config,
std::unique_ptr<DelayManager> delay_manager,
std::unique_ptr<BufferLevelFilter> buffer_level_filter)
: delay_manager_(std::move(delay_manager)),
buffer_level_filter_(std::move(buffer_level_filter)),
packet_arrival_history_(config_.packet_history_size_ms),
tick_timer_(config.tick_timer),
disallow_time_stretching_(!config.allow_time_stretching),
timescale_countdown_(
tick_timer_->GetNewCountdown(kMinTimescaleInterval + 1)) {}
DecisionLogic::~DecisionLogic() = default;
void DecisionLogic::SoftReset() {
packet_length_samples_ = 0;
sample_memory_ = 0;
prev_time_scale_ = false;
timescale_countdown_ =
tick_timer_->GetNewCountdown(kMinTimescaleInterval + 1);
time_stretched_cn_samples_ = 0;
delay_manager_->Reset();
buffer_level_filter_->Reset();
packet_arrival_history_.Reset();
}
void DecisionLogic::SetSampleRate(int fs_hz, size_t output_size_samples) {
// TODO(hlundin): Change to an enumerator and skip assert.
RTC_DCHECK(fs_hz == 8000 || fs_hz == 16000 || fs_hz == 32000 ||
fs_hz == 48000);
sample_rate_khz_ = fs_hz / 1000;
output_size_samples_ = output_size_samples;
packet_arrival_history_.set_sample_rate(fs_hz);
}
NetEq::Operation DecisionLogic::GetDecision(const NetEqStatus& status,
bool* reset_decoder) {
prev_time_scale_ = prev_time_scale_ && IsTimestretch(status.last_mode);
if (prev_time_scale_) {
timescale_countdown_ = tick_timer_->GetNewCountdown(kMinTimescaleInterval);
}
if (!IsCng(status.last_mode) &&
!(config_.combine_concealment_decision && IsExpand(status.last_mode))) {
FilterBufferLevel(status.packet_buffer_info.span_samples);
}
// Guard for errors, to avoid getting stuck in error mode.
if (status.last_mode == NetEq::Mode::kError) {
if (!status.next_packet) {
return NetEq::Operation::kExpand;
} else {
// Use kUndefined to flag for a reset.
return NetEq::Operation::kUndefined;
}
}
if (status.next_packet && status.next_packet->is_cng) {
return CngOperation(status);
}
// Handle the case with no packet at all available (except maybe DTMF).
if (!status.next_packet) {
return NoPacket(status);
}
// If the expand period was very long, reset NetEQ since it is likely that the
// sender was restarted.
if (!config_.combine_concealment_decision && IsExpand(status.last_mode) &&
status.generated_noise_samples >
static_cast<size_t>(kReinitAfterExpandsMs * sample_rate_khz_)) {
*reset_decoder = true;
return NetEq::Operation::kNormal;
}
if (PostponeDecode(status)) {
return NoPacket(status);
}
const uint32_t five_seconds_samples =
static_cast<uint32_t>(5000 * sample_rate_khz_);
// Check if the required packet is available.
if (status.target_timestamp == status.next_packet->timestamp) {
return ExpectedPacketAvailable(status);
}
if (!PacketBuffer::IsObsoleteTimestamp(status.next_packet->timestamp,
status.target_timestamp,
five_seconds_samples)) {
return FuturePacketAvailable(status);
}
// This implies that available_timestamp < target_timestamp, which can
// happen when a new stream or codec is received. Signal for a reset.
return NetEq::Operation::kUndefined;
}
int DecisionLogic::TargetLevelMs() const {
int target_delay_ms = delay_manager_->TargetDelayMs();
if (!config_.enable_stable_delay_mode) {
target_delay_ms =
std::max(target_delay_ms,
static_cast<int>(packet_length_samples_ / sample_rate_khz_));
}
return target_delay_ms;
}
int DecisionLogic::UnlimitedTargetLevelMs() const {
return delay_manager_->UnlimitedTargetLevelMs();
}
int DecisionLogic::GetFilteredBufferLevel() const {
return buffer_level_filter_->filtered_current_level();
}
absl::optional<int> DecisionLogic::PacketArrived(
int fs_hz,
bool should_update_stats,
const PacketArrivedInfo& info) {
buffer_flush_ = buffer_flush_ || info.buffer_flush;
if (!should_update_stats || info.is_cng_or_dtmf) {
return absl::nullopt;
}
if (info.packet_length_samples > 0 && fs_hz > 0 &&
info.packet_length_samples != packet_length_samples_) {
packet_length_samples_ = info.packet_length_samples;
delay_manager_->SetPacketAudioLength(packet_length_samples_ * 1000 / fs_hz);
}
int64_t time_now_ms = tick_timer_->ticks() * tick_timer_->ms_per_tick();
packet_arrival_history_.Insert(info.main_timestamp, time_now_ms);
if (packet_arrival_history_.size() < 2) {
// No meaningful delay estimate unless at least 2 packets have arrived.
return absl::nullopt;
}
int arrival_delay_ms =
packet_arrival_history_.GetDelayMs(info.main_timestamp, time_now_ms);
bool reordered =
!packet_arrival_history_.IsNewestRtpTimestamp(info.main_timestamp);
delay_manager_->Update(arrival_delay_ms, reordered);
return arrival_delay_ms;
}
void DecisionLogic::FilterBufferLevel(size_t buffer_size_samples) {
buffer_level_filter_->SetTargetBufferLevel(TargetLevelMs());
int time_stretched_samples = time_stretched_cn_samples_;
if (prev_time_scale_) {
time_stretched_samples += sample_memory_;
}
if (buffer_flush_) {
buffer_level_filter_->SetFilteredBufferLevel(buffer_size_samples);
buffer_flush_ = false;
} else {
buffer_level_filter_->Update(buffer_size_samples, time_stretched_samples);
}
prev_time_scale_ = false;
time_stretched_cn_samples_ = 0;
}
NetEq::Operation DecisionLogic::CngOperation(
NetEqController::NetEqStatus status) {
// Signed difference between target and available timestamp.
int32_t timestamp_diff = static_cast<int32_t>(
static_cast<uint32_t>(status.generated_noise_samples +
status.target_timestamp) -
status.next_packet->timestamp);
int optimal_level_samp = TargetLevelMs() * sample_rate_khz_;
const int64_t excess_waiting_time_samp =
-static_cast<int64_t>(timestamp_diff) - optimal_level_samp;
if (excess_waiting_time_samp > optimal_level_samp / 2) {
// The waiting time for this packet will be longer than 1.5
// times the wanted buffer delay. Apply fast-forward to cut the
// waiting time down to the optimal.
noise_fast_forward_ = rtc::saturated_cast<size_t>(noise_fast_forward_ +
excess_waiting_time_samp);
timestamp_diff =
rtc::saturated_cast<int32_t>(timestamp_diff + excess_waiting_time_samp);
}
if (timestamp_diff < 0 && status.last_mode == NetEq::Mode::kRfc3389Cng) {
// Not time to play this packet yet. Wait another round before using this
// packet. Keep on playing CNG from previous CNG parameters.
return NetEq::Operation::kRfc3389CngNoPacket;
} else {
// Otherwise, go for the CNG packet now.
noise_fast_forward_ = 0;
return NetEq::Operation::kRfc3389Cng;
}
}
NetEq::Operation DecisionLogic::NoPacket(NetEqController::NetEqStatus status) {
switch (status.last_mode) {
case NetEq::Mode::kRfc3389Cng:
return NetEq::Operation::kRfc3389CngNoPacket;
case NetEq::Mode::kCodecInternalCng: {
// Stop CNG after a timeout.
if (config_.cng_timeout_ms &&
status.generated_noise_samples >
static_cast<size_t>(*config_.cng_timeout_ms * sample_rate_khz_)) {
return NetEq::Operation::kExpand;
}
return NetEq::Operation::kCodecInternalCng;
}
default:
return status.play_dtmf ? NetEq::Operation::kDtmf
: NetEq::Operation::kExpand;
}
}
NetEq::Operation DecisionLogic::ExpectedPacketAvailable(
NetEqController::NetEqStatus status) {
if (!disallow_time_stretching_ && status.last_mode != NetEq::Mode::kExpand &&
!status.play_dtmf) {
if (config_.enable_stable_delay_mode) {
const int playout_delay_ms = GetPlayoutDelayMs(status);
const int low_limit = TargetLevelMs();
const int high_limit = low_limit +
packet_arrival_history_.GetMaxDelayMs() +
kDelayAdjustmentGranularityMs;
if (playout_delay_ms >= high_limit * 4) {
return NetEq::Operation::kFastAccelerate;
}
if (TimescaleAllowed()) {
if (playout_delay_ms >= high_limit) {
return NetEq::Operation::kAccelerate;
}
if (playout_delay_ms < low_limit) {
return NetEq::Operation::kPreemptiveExpand;
}
}
} else {
const int target_level_samples = TargetLevelMs() * sample_rate_khz_;
const int low_limit = std::max(
target_level_samples * 3 / 4,
target_level_samples -
config_.deceleration_target_level_offset_ms * sample_rate_khz_);
const int high_limit = std::max(
target_level_samples,
low_limit + kDelayAdjustmentGranularityMs * sample_rate_khz_);
const int buffer_level_samples =
buffer_level_filter_->filtered_current_level();
if (buffer_level_samples >= high_limit * 4)
return NetEq::Operation::kFastAccelerate;
if (TimescaleAllowed()) {
if (buffer_level_samples >= high_limit)
return NetEq::Operation::kAccelerate;
if (buffer_level_samples < low_limit)
return NetEq::Operation::kPreemptiveExpand;
}
}
}
return NetEq::Operation::kNormal;
}
NetEq::Operation DecisionLogic::FuturePacketAvailable(
NetEqController::NetEqStatus status) {
// Required packet is not available, but a future packet is.
// Check if we should continue with an ongoing concealment because the new
// packet is too far into the future.
if (config_.combine_concealment_decision || IsCng(status.last_mode)) {
const int buffer_delay_samples =
config_.combine_concealment_decision
? status.packet_buffer_info.span_samples_wait_time
: status.packet_buffer_info.span_samples;
const int buffer_delay_ms = buffer_delay_samples / sample_rate_khz_;
const int high_limit = TargetLevelMs() + kTargetLevelWindowMs / 2;
const int low_limit =
std::max(0, TargetLevelMs() - kTargetLevelWindowMs / 2);
const bool above_target_delay = buffer_delay_ms > high_limit;
const bool below_target_delay = buffer_delay_ms < low_limit;
if ((PacketTooEarly(status) && !above_target_delay) ||
(below_target_delay && !config_.combine_concealment_decision)) {
return NoPacket(status);
}
uint32_t timestamp_leap =
status.next_packet->timestamp - status.target_timestamp;
if (config_.combine_concealment_decision) {
if (timestamp_leap != status.generated_noise_samples) {
// The delay was adjusted, reinitialize the buffer level filter.
buffer_level_filter_->SetFilteredBufferLevel(buffer_delay_samples);
}
} else {
time_stretched_cn_samples_ =
timestamp_leap - status.generated_noise_samples;
}
} else if (IsExpand(status.last_mode) && ShouldContinueExpand(status)) {
return NoPacket(status);
}
// Time to play the next packet.
switch (status.last_mode) {
case NetEq::Mode::kExpand:
return NetEq::Operation::kMerge;
case NetEq::Mode::kCodecPlc:
case NetEq::Mode::kRfc3389Cng:
case NetEq::Mode::kCodecInternalCng:
return NetEq::Operation::kNormal;
default:
return status.play_dtmf ? NetEq::Operation::kDtmf
: NetEq::Operation::kExpand;
}
}
bool DecisionLogic::UnderTargetLevel() const {
return buffer_level_filter_->filtered_current_level() <
TargetLevelMs() * sample_rate_khz_;
}
bool DecisionLogic::PostponeDecode(NetEqController::NetEqStatus status) const {
// Make sure we don't restart audio too soon after CNG or expand to avoid
// running out of data right away again.
const size_t min_buffer_level_samples =
TargetLevelMs() * sample_rate_khz_ * kPostponeDecodingLevel / 100;
const size_t buffer_level_samples =
config_.combine_concealment_decision
? status.packet_buffer_info.span_samples_wait_time
: status.packet_buffer_info.span_samples;
if (buffer_level_samples >= min_buffer_level_samples) {
return false;
}
// Don't postpone decoding if there is a future DTX packet in the packet
// buffer.
if (status.packet_buffer_info.dtx_or_cng) {
return false;
}
// Continue CNG until the buffer is at least at the minimum level.
if (config_.combine_concealment_decision && IsCng(status.last_mode)) {
return true;
}
// Only continue expand if the mute factor is low enough (otherwise the
// expansion was short enough to not be noticable). Note that the MuteFactor
// is in Q14, so a value of 16384 corresponds to 1.
if (IsExpand(status.last_mode) && status.expand_mutefactor < 16384 / 2) {
return true;
}
return false;
}
bool DecisionLogic::ReinitAfterExpands(
NetEqController::NetEqStatus status) const {
const uint32_t timestamp_leap =
status.next_packet->timestamp - status.target_timestamp;
return timestamp_leap >=
static_cast<uint32_t>(kReinitAfterExpandsMs * sample_rate_khz_);
}
bool DecisionLogic::PacketTooEarly(NetEqController::NetEqStatus status) const {
const uint32_t timestamp_leap =
status.next_packet->timestamp - status.target_timestamp;
return timestamp_leap > status.generated_noise_samples;
}
bool DecisionLogic::MaxWaitForPacket(
NetEqController::NetEqStatus status) const {
return status.generated_noise_samples >=
static_cast<size_t>(kMaxWaitForPacketMs * sample_rate_khz_);
}
bool DecisionLogic::ShouldContinueExpand(
NetEqController::NetEqStatus status) const {
return !ReinitAfterExpands(status) && !MaxWaitForPacket(status) &&
PacketTooEarly(status) && UnderTargetLevel();
}
int DecisionLogic::GetPlayoutDelayMs(
NetEqController::NetEqStatus status) const {
uint32_t playout_timestamp =
status.target_timestamp - status.sync_buffer_samples;
return packet_arrival_history_.GetDelayMs(
playout_timestamp, tick_timer_->ticks() * tick_timer_->ms_per_tick());
}
} // namespace webrtc