webrtc/rtc_tools/frame_analyzer/linear_least_squares.cc
Magnus Jedvert 1927dfafab Add tool for aligning color space of video files
This class adds logic for aligning color space of a test video compared
to a reference video. If there is a color space mismatch, it typically
does not have much impact on human perception, but it has a big impact
on PSNR and SSIM calculations. For example, aligning a test run with VP8
improves PSNR and SSIM from:
Average PSNR: 29.142818, average SSIM: 0.946026
to:
Average PSNR: 38.146229, average SSIM: 0.965388.

The optiomal color transformation between the two videos were:
0.86 0.01 0.00 14.37
0.00 0.88 0.00 15.32
0.00 0.00 0.88 15.74
which is converting YUV full range to YUV limited range. There is
already a CL out for fixing this discrepancy here:
https://webrtc-review.googlesource.com/c/src/+/94543

After that, hopefully there is no color space mismatch when saving the
raw YUV values. It's good that the video quality tool is color space
agnostic anyway, and can compensate for differences when the test
video is obtained by e.g. filming a physical device screen.

Also, the linear least square logic will be used for compensating
geometric distorisions in a follow-up CL.

Bug: webrtc:9642
Change-Id: I499713960a0544d8e45c5d09886e68ec829b28a7
Reviewed-on: https://webrtc-review.googlesource.com/c/95950
Reviewed-by: Sami Kalliomäki <sakal@webrtc.org>
Reviewed-by: Patrik Höglund <phoglund@webrtc.org>
Commit-Queue: Magnus Jedvert <magjed@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#25193}
2018-10-16 07:55:37 +00:00

200 lines
7.1 KiB
C++

/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "rtc_tools/frame_analyzer/linear_least_squares.h"
#include <numeric>
#include <utility>
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
namespace webrtc {
namespace test {
template <class T>
using Matrix = std::valarray<std::valarray<T>>;
namespace {
template <typename R, typename T>
R DotProduct(const std::valarray<T>& a, const std::valarray<T>& b) {
RTC_CHECK_EQ(a.size(), b.size());
return std::inner_product(std::begin(a), std::end(a), std::begin(b), R(0));
}
// Calculates a^T * b.
template <typename R, typename T>
Matrix<R> MatrixMultiply(const Matrix<T>& a, const Matrix<T>& b) {
Matrix<R> result(std::valarray<R>(a.size()), b.size());
for (size_t i = 0; i < a.size(); ++i) {
for (size_t j = 0; j < b.size(); ++j)
result[j][i] = DotProduct<R>(a[i], b[j]);
}
return result;
}
template <typename T>
Matrix<T> Transpose(const Matrix<T>& matrix) {
if (matrix.size() == 0)
return Matrix<T>();
const size_t rows = matrix.size();
const size_t columns = matrix[0].size();
Matrix<T> result(std::valarray<T>(rows), columns);
for (size_t i = 0; i < rows; ++i) {
for (size_t j = 0; j < columns; ++j)
result[j][i] = matrix[i][j];
}
return result;
}
// Convert valarray from type T to type R.
template <typename R, typename T>
std::valarray<R> ConvertTo(const std::valarray<T>& v) {
std::valarray<R> result(v.size());
for (size_t i = 0; i < v.size(); ++i)
result[i] = static_cast<R>(v[i]);
return result;
}
// Convert valarray Matrix from type T to type R.
template <typename R, typename T>
Matrix<R> ConvertTo(const Matrix<T>& mat) {
Matrix<R> result(mat.size());
for (size_t i = 0; i < mat.size(); ++i)
result[i] = ConvertTo<R>(mat[i]);
return result;
}
// Convert from valarray Matrix back to the more conventional std::vector.
template <typename T>
std::vector<std::vector<T>> ToVectorMatrix(const Matrix<T>& m) {
std::vector<std::vector<T>> result;
for (const std::valarray<T>& v : m)
result.emplace_back(std::begin(v), std::end(v));
return result;
}
// Create a valarray Matrix from a conventional std::vector.
template <typename T>
Matrix<T> FromVectorMatrix(const std::vector<std::vector<T>>& mat) {
Matrix<T> result(mat.size());
for (size_t i = 0; i < mat.size(); ++i)
result[i] = std::valarray<T>(mat[i].data(), mat[i].size());
return result;
}
// Returns |matrix_to_invert|^-1 * |right_hand_matrix|. |matrix_to_invert| must
// have square size.
Matrix<double> GaussianElimination(Matrix<double> matrix_to_invert,
Matrix<double> right_hand_matrix) {
// |n| is the width/height of |matrix_to_invert|.
const size_t n = matrix_to_invert.size();
// Make sure |matrix_to_invert| has square size.
for (const std::valarray<double>& column : matrix_to_invert)
RTC_CHECK_EQ(n, column.size());
// Make sure |right_hand_matrix| has correct size.
for (const std::valarray<double>& column : right_hand_matrix)
RTC_CHECK_EQ(n, column.size());
// Transpose the matrices before and after so that we can perform Gaussian
// elimination on the columns instead of the rows, since that is easier with
// our representation.
matrix_to_invert = Transpose(matrix_to_invert);
right_hand_matrix = Transpose(right_hand_matrix);
// Loop over the diagonal of |matrix_to_invert| and perform column reduction.
// Column reduction is a sequence of elementary column operations that is
// performed on both |matrix_to_invert| and |right_hand_matrix| until
// |matrix_to_invert| has been transformed to the identity matrix.
for (size_t diagonal_index = 0; diagonal_index < n; ++diagonal_index) {
// Make sure the diagonal element has the highest absolute value by
// swapping columns if necessary.
for (size_t column = diagonal_index + 1; column < n; ++column) {
if (std::abs(matrix_to_invert[column][diagonal_index]) >
std::abs(matrix_to_invert[diagonal_index][diagonal_index])) {
std::swap(matrix_to_invert[column], matrix_to_invert[diagonal_index]);
std::swap(right_hand_matrix[column], right_hand_matrix[diagonal_index]);
}
}
// Reduce the diagonal element to be 1, by dividing the column with that
// value. If the diagonal element is 0, it means the system of equations has
// many solutions, and in that case we will return an arbitrary solution.
if (matrix_to_invert[diagonal_index][diagonal_index] == 0.0) {
RTC_LOG(LS_WARNING) << "Matrix is not invertible, ignoring.";
continue;
}
const double diagonal_element =
matrix_to_invert[diagonal_index][diagonal_index];
matrix_to_invert[diagonal_index] /= diagonal_element;
right_hand_matrix[diagonal_index] /= diagonal_element;
// Eliminate the other entries in row |diagonal_index| by making them zero.
for (size_t column = 0; column < n; ++column) {
if (column == diagonal_index)
continue;
const double row_element = matrix_to_invert[column][diagonal_index];
matrix_to_invert[column] -=
row_element * matrix_to_invert[diagonal_index];
right_hand_matrix[column] -=
row_element * right_hand_matrix[diagonal_index];
}
}
// Transpose the result before returning it, explained in comment above.
return Transpose(right_hand_matrix);
}
} // namespace
IncrementalLinearLeastSquares::IncrementalLinearLeastSquares() = default;
IncrementalLinearLeastSquares::~IncrementalLinearLeastSquares() = default;
void IncrementalLinearLeastSquares::AddObservations(
const std::vector<std::vector<uint8_t>>& x,
const std::vector<std::vector<uint8_t>>& y) {
if (x.empty() || y.empty())
return;
// Make sure all columns are the same size.
const size_t n = x[0].size();
for (const std::vector<uint8_t>& column : x)
RTC_CHECK_EQ(n, column.size());
for (const std::vector<uint8_t>& column : y)
RTC_CHECK_EQ(n, column.size());
// We will multiply the uint8_t values together, so we need to expand to a
// type that can safely store those values, i.e. uint16_t.
const Matrix<uint16_t> unpacked_x = ConvertTo<uint16_t>(FromVectorMatrix(x));
const Matrix<uint16_t> unpacked_y = ConvertTo<uint16_t>(FromVectorMatrix(y));
const Matrix<uint64_t> xx = MatrixMultiply<uint64_t>(unpacked_x, unpacked_x);
const Matrix<uint64_t> xy = MatrixMultiply<uint64_t>(unpacked_x, unpacked_y);
if (sum_xx && sum_xy) {
*sum_xx += xx;
*sum_xy += xy;
} else {
sum_xx = xx;
sum_xy = xy;
}
}
std::vector<std::vector<double>>
IncrementalLinearLeastSquares::GetBestSolution() const {
RTC_CHECK(sum_xx && sum_xy) << "No observations have been added";
return ToVectorMatrix(GaussianElimination(ConvertTo<double>(*sum_xx),
ConvertTo<double>(*sum_xy)));
}
} // namespace test
} // namespace webrtc