mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-13 13:50:40 +01:00

Running clang-format with chromium's style guide. The goal is n-fold: * providing consistency and readability (that's what code guidelines are for) * preventing noise with presubmit checks and git cl format * building on the previous point: making it easier to automatically fix format issues * you name it Please consider using git-hyper-blame to ignore this commit. Bug: webrtc:9340 Change-Id: I694567c4cdf8cee2860958cfe82bfaf25848bb87 Reviewed-on: https://webrtc-review.googlesource.com/81185 Reviewed-by: Patrik Höglund <phoglund@webrtc.org> Cr-Commit-Position: refs/heads/master@{#23660}
521 lines
16 KiB
C++
521 lines
16 KiB
C++
/*
|
|
* Copyright 2016 The WebRTC Project Authors. All rights reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "rtc_base/task_queue.h"
|
|
|
|
// clang-format off
|
|
// clang formating would change include order.
|
|
|
|
// Include winsock2.h before including <windows.h> to maintain consistency with
|
|
// win32.h. To include win32.h directly, it must be broken out into its own
|
|
// build target.
|
|
#include <winsock2.h>
|
|
#include <windows.h>
|
|
#include <sal.h> // Must come after windows headers.
|
|
#include <mmsystem.h> // Must come after windows headers.
|
|
// clang-format on
|
|
#include <string.h>
|
|
|
|
#include <algorithm>
|
|
#include <queue>
|
|
#include <utility>
|
|
|
|
#include "rtc_base/arraysize.h"
|
|
#include "rtc_base/checks.h"
|
|
#include "rtc_base/criticalsection.h"
|
|
#include "rtc_base/event.h"
|
|
#include "rtc_base/logging.h"
|
|
#include "rtc_base/numerics/safe_conversions.h"
|
|
#include "rtc_base/platform_thread.h"
|
|
#include "rtc_base/refcount.h"
|
|
#include "rtc_base/refcountedobject.h"
|
|
#include "rtc_base/timeutils.h"
|
|
|
|
namespace rtc {
|
|
namespace {
|
|
#define WM_RUN_TASK WM_USER + 1
|
|
#define WM_QUEUE_DELAYED_TASK WM_USER + 2
|
|
|
|
using Priority = TaskQueue::Priority;
|
|
|
|
DWORD g_queue_ptr_tls = 0;
|
|
|
|
BOOL CALLBACK InitializeTls(PINIT_ONCE init_once, void* param, void** context) {
|
|
g_queue_ptr_tls = TlsAlloc();
|
|
return TRUE;
|
|
}
|
|
|
|
DWORD GetQueuePtrTls() {
|
|
static INIT_ONCE init_once = INIT_ONCE_STATIC_INIT;
|
|
::InitOnceExecuteOnce(&init_once, InitializeTls, nullptr, nullptr);
|
|
return g_queue_ptr_tls;
|
|
}
|
|
|
|
struct ThreadStartupData {
|
|
Event* started;
|
|
void* thread_context;
|
|
};
|
|
|
|
void CALLBACK InitializeQueueThread(ULONG_PTR param) {
|
|
MSG msg;
|
|
::PeekMessage(&msg, nullptr, WM_USER, WM_USER, PM_NOREMOVE);
|
|
ThreadStartupData* data = reinterpret_cast<ThreadStartupData*>(param);
|
|
::TlsSetValue(GetQueuePtrTls(), data->thread_context);
|
|
data->started->Set();
|
|
}
|
|
|
|
ThreadPriority TaskQueuePriorityToThreadPriority(Priority priority) {
|
|
switch (priority) {
|
|
case Priority::HIGH:
|
|
return kRealtimePriority;
|
|
case Priority::LOW:
|
|
return kLowPriority;
|
|
case Priority::NORMAL:
|
|
return kNormalPriority;
|
|
default:
|
|
RTC_NOTREACHED();
|
|
break;
|
|
}
|
|
return kNormalPriority;
|
|
}
|
|
|
|
int64_t GetTick() {
|
|
static const UINT kPeriod = 1;
|
|
bool high_res = (timeBeginPeriod(kPeriod) == TIMERR_NOERROR);
|
|
int64_t ret = TimeMillis();
|
|
if (high_res)
|
|
timeEndPeriod(kPeriod);
|
|
return ret;
|
|
}
|
|
|
|
class DelayedTaskInfo {
|
|
public:
|
|
// Default ctor needed to support priority_queue::pop().
|
|
DelayedTaskInfo() {}
|
|
DelayedTaskInfo(uint32_t milliseconds, std::unique_ptr<QueuedTask> task)
|
|
: due_time_(GetTick() + milliseconds), task_(std::move(task)) {}
|
|
DelayedTaskInfo(DelayedTaskInfo&&) = default;
|
|
|
|
// Implement for priority_queue.
|
|
bool operator>(const DelayedTaskInfo& other) const {
|
|
return due_time_ > other.due_time_;
|
|
}
|
|
|
|
// Required by priority_queue::pop().
|
|
DelayedTaskInfo& operator=(DelayedTaskInfo&& other) = default;
|
|
|
|
// See below for why this method is const.
|
|
void Run() const {
|
|
RTC_DCHECK(due_time_);
|
|
task_->Run() ? task_.reset() : static_cast<void>(task_.release());
|
|
}
|
|
|
|
int64_t due_time() const { return due_time_; }
|
|
|
|
private:
|
|
int64_t due_time_ = 0; // Absolute timestamp in milliseconds.
|
|
|
|
// |task| needs to be mutable because std::priority_queue::top() returns
|
|
// a const reference and a key in an ordered queue must not be changed.
|
|
// There are two basic workarounds, one using const_cast, which would also
|
|
// make the key (|due_time|), non-const and the other is to make the non-key
|
|
// (|task|), mutable.
|
|
// Because of this, the |task| variable is made private and can only be
|
|
// mutated by calling the |Run()| method.
|
|
mutable std::unique_ptr<QueuedTask> task_;
|
|
};
|
|
|
|
class MultimediaTimer {
|
|
public:
|
|
// Note: We create an event that requires manual reset.
|
|
MultimediaTimer() : event_(::CreateEvent(nullptr, true, false, nullptr)) {}
|
|
|
|
~MultimediaTimer() {
|
|
Cancel();
|
|
::CloseHandle(event_);
|
|
}
|
|
|
|
bool StartOneShotTimer(UINT delay_ms) {
|
|
RTC_DCHECK_EQ(0, timer_id_);
|
|
RTC_DCHECK(event_ != nullptr);
|
|
timer_id_ =
|
|
::timeSetEvent(delay_ms, 0, reinterpret_cast<LPTIMECALLBACK>(event_), 0,
|
|
TIME_ONESHOT | TIME_CALLBACK_EVENT_SET);
|
|
return timer_id_ != 0;
|
|
}
|
|
|
|
void Cancel() {
|
|
::ResetEvent(event_);
|
|
if (timer_id_) {
|
|
::timeKillEvent(timer_id_);
|
|
timer_id_ = 0;
|
|
}
|
|
}
|
|
|
|
HANDLE* event_for_wait() { return &event_; }
|
|
|
|
private:
|
|
HANDLE event_ = nullptr;
|
|
MMRESULT timer_id_ = 0;
|
|
|
|
RTC_DISALLOW_COPY_AND_ASSIGN(MultimediaTimer);
|
|
};
|
|
|
|
} // namespace
|
|
|
|
class TaskQueue::Impl : public RefCountInterface {
|
|
public:
|
|
Impl(const char* queue_name, TaskQueue* queue, Priority priority);
|
|
~Impl() override;
|
|
|
|
static TaskQueue::Impl* Current();
|
|
static TaskQueue* CurrentQueue();
|
|
|
|
// Used for DCHECKing the current queue.
|
|
bool IsCurrent() const;
|
|
|
|
template <class Closure,
|
|
typename std::enable_if<!std::is_convertible<
|
|
Closure,
|
|
std::unique_ptr<QueuedTask>>::value>::type* = nullptr>
|
|
void PostTask(Closure&& closure) {
|
|
PostTask(NewClosure(std::forward<Closure>(closure)));
|
|
}
|
|
|
|
void PostTask(std::unique_ptr<QueuedTask> task);
|
|
void PostTaskAndReply(std::unique_ptr<QueuedTask> task,
|
|
std::unique_ptr<QueuedTask> reply,
|
|
TaskQueue::Impl* reply_queue);
|
|
|
|
void PostDelayedTask(std::unique_ptr<QueuedTask> task, uint32_t milliseconds);
|
|
|
|
void RunPendingTasks();
|
|
|
|
private:
|
|
static void ThreadMain(void* context);
|
|
|
|
class WorkerThread : public PlatformThread {
|
|
public:
|
|
WorkerThread(ThreadRunFunction func,
|
|
void* obj,
|
|
const char* thread_name,
|
|
ThreadPriority priority)
|
|
: PlatformThread(func, obj, thread_name, priority) {}
|
|
|
|
bool QueueAPC(PAPCFUNC apc_function, ULONG_PTR data) {
|
|
return PlatformThread::QueueAPC(apc_function, data);
|
|
}
|
|
};
|
|
|
|
class ThreadState {
|
|
public:
|
|
explicit ThreadState(HANDLE in_queue) : in_queue_(in_queue) {}
|
|
~ThreadState() {}
|
|
|
|
void RunThreadMain();
|
|
|
|
private:
|
|
bool ProcessQueuedMessages();
|
|
void RunDueTasks();
|
|
void ScheduleNextTimer();
|
|
void CancelTimers();
|
|
|
|
// Since priority_queue<> by defult orders items in terms of
|
|
// largest->smallest, using std::less<>, and we want smallest->largest,
|
|
// we would like to use std::greater<> here. Alas it's only available in
|
|
// C++14 and later, so we roll our own compare template that that relies on
|
|
// operator<().
|
|
template <typename T>
|
|
struct greater {
|
|
bool operator()(const T& l, const T& r) { return l > r; }
|
|
};
|
|
|
|
MultimediaTimer timer_;
|
|
std::priority_queue<DelayedTaskInfo,
|
|
std::vector<DelayedTaskInfo>,
|
|
greater<DelayedTaskInfo>>
|
|
timer_tasks_;
|
|
UINT_PTR timer_id_ = 0;
|
|
HANDLE in_queue_;
|
|
};
|
|
|
|
TaskQueue* const queue_;
|
|
WorkerThread thread_;
|
|
rtc::CriticalSection pending_lock_;
|
|
std::queue<std::unique_ptr<QueuedTask>> pending_
|
|
RTC_GUARDED_BY(pending_lock_);
|
|
HANDLE in_queue_;
|
|
};
|
|
|
|
TaskQueue::Impl::Impl(const char* queue_name,
|
|
TaskQueue* queue,
|
|
Priority priority)
|
|
: queue_(queue),
|
|
thread_(&TaskQueue::Impl::ThreadMain,
|
|
this,
|
|
queue_name,
|
|
TaskQueuePriorityToThreadPriority(priority)),
|
|
in_queue_(::CreateEvent(nullptr, true, false, nullptr)) {
|
|
RTC_DCHECK(queue_name);
|
|
RTC_DCHECK(in_queue_);
|
|
thread_.Start();
|
|
Event event(false, false);
|
|
ThreadStartupData startup = {&event, this};
|
|
RTC_CHECK(thread_.QueueAPC(&InitializeQueueThread,
|
|
reinterpret_cast<ULONG_PTR>(&startup)));
|
|
event.Wait(Event::kForever);
|
|
}
|
|
|
|
TaskQueue::Impl::~Impl() {
|
|
RTC_DCHECK(!IsCurrent());
|
|
while (!::PostThreadMessage(thread_.GetThreadRef(), WM_QUIT, 0, 0)) {
|
|
RTC_CHECK_EQ(ERROR_NOT_ENOUGH_QUOTA, ::GetLastError());
|
|
Sleep(1);
|
|
}
|
|
thread_.Stop();
|
|
::CloseHandle(in_queue_);
|
|
}
|
|
|
|
// static
|
|
TaskQueue::Impl* TaskQueue::Impl::Current() {
|
|
return static_cast<TaskQueue::Impl*>(::TlsGetValue(GetQueuePtrTls()));
|
|
}
|
|
|
|
// static
|
|
TaskQueue* TaskQueue::Impl::CurrentQueue() {
|
|
TaskQueue::Impl* current = Current();
|
|
return current ? current->queue_ : nullptr;
|
|
}
|
|
|
|
bool TaskQueue::Impl::IsCurrent() const {
|
|
return IsThreadRefEqual(thread_.GetThreadRef(), CurrentThreadRef());
|
|
}
|
|
|
|
void TaskQueue::Impl::PostTask(std::unique_ptr<QueuedTask> task) {
|
|
rtc::CritScope lock(&pending_lock_);
|
|
pending_.push(std::move(task));
|
|
::SetEvent(in_queue_);
|
|
}
|
|
|
|
void TaskQueue::Impl::PostDelayedTask(std::unique_ptr<QueuedTask> task,
|
|
uint32_t milliseconds) {
|
|
if (!milliseconds) {
|
|
PostTask(std::move(task));
|
|
return;
|
|
}
|
|
|
|
// TODO(tommi): Avoid this allocation. It is currently here since
|
|
// the timestamp stored in the task info object, is a 64bit timestamp
|
|
// and WPARAM is 32bits in 32bit builds. Otherwise, we could pass the
|
|
// task pointer and timestamp as LPARAM and WPARAM.
|
|
auto* task_info = new DelayedTaskInfo(milliseconds, std::move(task));
|
|
if (!::PostThreadMessage(thread_.GetThreadRef(), WM_QUEUE_DELAYED_TASK, 0,
|
|
reinterpret_cast<LPARAM>(task_info))) {
|
|
delete task_info;
|
|
}
|
|
}
|
|
|
|
void TaskQueue::Impl::PostTaskAndReply(std::unique_ptr<QueuedTask> task,
|
|
std::unique_ptr<QueuedTask> reply,
|
|
TaskQueue::Impl* reply_queue) {
|
|
QueuedTask* task_ptr = task.release();
|
|
QueuedTask* reply_task_ptr = reply.release();
|
|
DWORD reply_thread_id = reply_queue->thread_.GetThreadRef();
|
|
PostTask([task_ptr, reply_task_ptr, reply_thread_id]() {
|
|
if (task_ptr->Run())
|
|
delete task_ptr;
|
|
// If the thread's message queue is full, we can't queue the task and will
|
|
// have to drop it (i.e. delete).
|
|
if (!::PostThreadMessage(reply_thread_id, WM_RUN_TASK, 0,
|
|
reinterpret_cast<LPARAM>(reply_task_ptr))) {
|
|
delete reply_task_ptr;
|
|
}
|
|
});
|
|
}
|
|
|
|
void TaskQueue::Impl::RunPendingTasks() {
|
|
while (true) {
|
|
std::unique_ptr<QueuedTask> task;
|
|
{
|
|
rtc::CritScope lock(&pending_lock_);
|
|
if (pending_.empty())
|
|
break;
|
|
task = std::move(pending_.front());
|
|
pending_.pop();
|
|
}
|
|
|
|
if (!task->Run())
|
|
task.release();
|
|
}
|
|
}
|
|
|
|
// static
|
|
void TaskQueue::Impl::ThreadMain(void* context) {
|
|
ThreadState state(static_cast<TaskQueue::Impl*>(context)->in_queue_);
|
|
state.RunThreadMain();
|
|
}
|
|
|
|
void TaskQueue::Impl::ThreadState::RunThreadMain() {
|
|
HANDLE handles[2] = {*timer_.event_for_wait(), in_queue_};
|
|
while (true) {
|
|
// Make sure we do an alertable wait as that's required to allow APCs to run
|
|
// (e.g. required for InitializeQueueThread and stopping the thread in
|
|
// PlatformThread).
|
|
DWORD result = ::MsgWaitForMultipleObjectsEx(
|
|
arraysize(handles), handles, INFINITE, QS_ALLEVENTS, MWMO_ALERTABLE);
|
|
RTC_CHECK_NE(WAIT_FAILED, result);
|
|
if (result == (WAIT_OBJECT_0 + 2)) {
|
|
// There are messages in the message queue that need to be handled.
|
|
if (!ProcessQueuedMessages())
|
|
break;
|
|
}
|
|
|
|
if (result == WAIT_OBJECT_0 ||
|
|
(!timer_tasks_.empty() &&
|
|
::WaitForSingleObject(*timer_.event_for_wait(), 0) == WAIT_OBJECT_0)) {
|
|
// The multimedia timer was signaled.
|
|
timer_.Cancel();
|
|
RunDueTasks();
|
|
ScheduleNextTimer();
|
|
}
|
|
|
|
if (result == (WAIT_OBJECT_0 + 1)) {
|
|
::ResetEvent(in_queue_);
|
|
TaskQueue::Impl::Current()->RunPendingTasks();
|
|
}
|
|
}
|
|
}
|
|
|
|
bool TaskQueue::Impl::ThreadState::ProcessQueuedMessages() {
|
|
MSG msg = {};
|
|
// To protect against overly busy message queues, we limit the time
|
|
// we process tasks to a few milliseconds. If we don't do that, there's
|
|
// a chance that timer tasks won't ever run.
|
|
static const int kMaxTaskProcessingTimeMs = 500;
|
|
auto start = GetTick();
|
|
while (::PeekMessage(&msg, nullptr, 0, 0, PM_REMOVE) &&
|
|
msg.message != WM_QUIT) {
|
|
if (!msg.hwnd) {
|
|
switch (msg.message) {
|
|
// TODO(tommi): Stop using this way of queueing tasks.
|
|
case WM_RUN_TASK: {
|
|
QueuedTask* task = reinterpret_cast<QueuedTask*>(msg.lParam);
|
|
if (task->Run())
|
|
delete task;
|
|
break;
|
|
}
|
|
case WM_QUEUE_DELAYED_TASK: {
|
|
std::unique_ptr<DelayedTaskInfo> info(
|
|
reinterpret_cast<DelayedTaskInfo*>(msg.lParam));
|
|
bool need_to_schedule_timers =
|
|
timer_tasks_.empty() ||
|
|
timer_tasks_.top().due_time() > info->due_time();
|
|
timer_tasks_.emplace(std::move(*info.get()));
|
|
if (need_to_schedule_timers) {
|
|
CancelTimers();
|
|
ScheduleNextTimer();
|
|
}
|
|
break;
|
|
}
|
|
case WM_TIMER: {
|
|
RTC_DCHECK_EQ(timer_id_, msg.wParam);
|
|
::KillTimer(nullptr, msg.wParam);
|
|
timer_id_ = 0;
|
|
RunDueTasks();
|
|
ScheduleNextTimer();
|
|
break;
|
|
}
|
|
default:
|
|
RTC_NOTREACHED();
|
|
break;
|
|
}
|
|
} else {
|
|
::TranslateMessage(&msg);
|
|
::DispatchMessage(&msg);
|
|
}
|
|
|
|
if (GetTick() > start + kMaxTaskProcessingTimeMs)
|
|
break;
|
|
}
|
|
return msg.message != WM_QUIT;
|
|
}
|
|
|
|
void TaskQueue::Impl::ThreadState::RunDueTasks() {
|
|
RTC_DCHECK(!timer_tasks_.empty());
|
|
auto now = GetTick();
|
|
do {
|
|
const auto& top = timer_tasks_.top();
|
|
if (top.due_time() > now)
|
|
break;
|
|
top.Run();
|
|
timer_tasks_.pop();
|
|
} while (!timer_tasks_.empty());
|
|
}
|
|
|
|
void TaskQueue::Impl::ThreadState::ScheduleNextTimer() {
|
|
RTC_DCHECK_EQ(timer_id_, 0);
|
|
if (timer_tasks_.empty())
|
|
return;
|
|
|
|
const auto& next_task = timer_tasks_.top();
|
|
int64_t delay_ms = std::max(0ll, next_task.due_time() - GetTick());
|
|
uint32_t milliseconds = rtc::dchecked_cast<uint32_t>(delay_ms);
|
|
if (!timer_.StartOneShotTimer(milliseconds))
|
|
timer_id_ = ::SetTimer(nullptr, 0, milliseconds, nullptr);
|
|
}
|
|
|
|
void TaskQueue::Impl::ThreadState::CancelTimers() {
|
|
timer_.Cancel();
|
|
if (timer_id_) {
|
|
::KillTimer(nullptr, timer_id_);
|
|
timer_id_ = 0;
|
|
}
|
|
}
|
|
|
|
// Boilerplate for the PIMPL pattern.
|
|
TaskQueue::TaskQueue(const char* queue_name, Priority priority)
|
|
: impl_(new RefCountedObject<TaskQueue::Impl>(queue_name, this, priority)) {
|
|
}
|
|
|
|
TaskQueue::~TaskQueue() {}
|
|
|
|
// static
|
|
TaskQueue* TaskQueue::Current() {
|
|
return TaskQueue::Impl::CurrentQueue();
|
|
}
|
|
|
|
// Used for DCHECKing the current queue.
|
|
bool TaskQueue::IsCurrent() const {
|
|
return impl_->IsCurrent();
|
|
}
|
|
|
|
void TaskQueue::PostTask(std::unique_ptr<QueuedTask> task) {
|
|
return TaskQueue::impl_->PostTask(std::move(task));
|
|
}
|
|
|
|
void TaskQueue::PostTaskAndReply(std::unique_ptr<QueuedTask> task,
|
|
std::unique_ptr<QueuedTask> reply,
|
|
TaskQueue* reply_queue) {
|
|
return TaskQueue::impl_->PostTaskAndReply(std::move(task), std::move(reply),
|
|
reply_queue->impl_.get());
|
|
}
|
|
|
|
void TaskQueue::PostTaskAndReply(std::unique_ptr<QueuedTask> task,
|
|
std::unique_ptr<QueuedTask> reply) {
|
|
return TaskQueue::impl_->PostTaskAndReply(std::move(task), std::move(reply),
|
|
impl_.get());
|
|
}
|
|
|
|
void TaskQueue::PostDelayedTask(std::unique_ptr<QueuedTask> task,
|
|
uint32_t milliseconds) {
|
|
return TaskQueue::impl_->PostDelayedTask(std::move(task), milliseconds);
|
|
}
|
|
|
|
} // namespace rtc
|