webrtc/modules/video_coding/svc/scalability_structure_full_svc.cc
Emil Lundmark 7f876c8930 Allow full SVC to reference T0 frame only after it has been encoded
The VP9 encoder may drop a frame internally which will not advance the
frame pattern. Consider the following scenario where only spatial layer
0 and temporal layer 0 is active:

1. Key frame encoded
2. Spatial layer 1 is activated
3. Delta T0 dropped
4. Delta T0 encoded

No S1T0 frame is encoded in (1) since it's not active. When
NextFrameConfig is called in (3) it will say that future frames may
reference T0 on both S0 and S1, but it's then dropped.

On step (4), the SVC controller essentially thinks it's encoding a new
picture and will happily reference the T0 on what it thinks is the first
delta frame. However, this is actually still the key frame and since
there was no S1T0 frame produced it will reference an invalid buffer.

To fix this, only say it's possible to reference a T0 frame after it has
been successfully encoded.

Bug: webrtc:11999, webrtc:13142, chromium:1178444
Change-Id: Iab3d2042ce0b3fa7d952b2831d1a36b1a6613a86
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/231695
Reviewed-by: Erik Språng <sprang@webrtc.org>
Reviewed-by: Danil Chapovalov <danilchap@webrtc.org>
Commit-Queue: Emil Lundmark <lndmrk@webrtc.org>
Cr-Commit-Position: refs/heads/main@{#34982}
2021-09-13 15:52:42 +00:00

401 lines
16 KiB
C++

/*
* Copyright (c) 2020 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/svc/scalability_structure_full_svc.h"
#include <utility>
#include <vector>
#include "absl/strings/string_view.h"
#include "absl/types/optional.h"
#include "api/transport/rtp/dependency_descriptor.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
namespace webrtc {
constexpr int ScalabilityStructureFullSvc::kMaxNumSpatialLayers;
constexpr int ScalabilityStructureFullSvc::kMaxNumTemporalLayers;
constexpr absl::string_view ScalabilityStructureFullSvc::kFramePatternNames[];
ScalabilityStructureFullSvc::ScalabilityStructureFullSvc(
int num_spatial_layers,
int num_temporal_layers,
ScalingFactor resolution_factor)
: num_spatial_layers_(num_spatial_layers),
num_temporal_layers_(num_temporal_layers),
resolution_factor_(resolution_factor),
active_decode_targets_(
(uint32_t{1} << (num_spatial_layers * num_temporal_layers)) - 1) {
RTC_DCHECK_LE(num_spatial_layers, kMaxNumSpatialLayers);
RTC_DCHECK_LE(num_temporal_layers, kMaxNumTemporalLayers);
}
ScalabilityStructureFullSvc::~ScalabilityStructureFullSvc() = default;
ScalabilityStructureFullSvc::StreamLayersConfig
ScalabilityStructureFullSvc::StreamConfig() const {
StreamLayersConfig result;
result.num_spatial_layers = num_spatial_layers_;
result.num_temporal_layers = num_temporal_layers_;
result.scaling_factor_num[num_spatial_layers_ - 1] = 1;
result.scaling_factor_den[num_spatial_layers_ - 1] = 1;
for (int sid = num_spatial_layers_ - 1; sid > 0; --sid) {
result.scaling_factor_num[sid - 1] =
resolution_factor_.num * result.scaling_factor_num[sid];
result.scaling_factor_den[sid - 1] =
resolution_factor_.den * result.scaling_factor_den[sid];
}
result.uses_reference_scaling = num_spatial_layers_ > 1;
return result;
}
bool ScalabilityStructureFullSvc::TemporalLayerIsActive(int tid) const {
if (tid >= num_temporal_layers_) {
return false;
}
for (int sid = 0; sid < num_spatial_layers_; ++sid) {
if (DecodeTargetIsActive(sid, tid)) {
return true;
}
}
return false;
}
DecodeTargetIndication ScalabilityStructureFullSvc::Dti(
int sid,
int tid,
const LayerFrameConfig& config) {
if (sid < config.SpatialId() || tid < config.TemporalId()) {
return DecodeTargetIndication::kNotPresent;
}
if (sid == config.SpatialId()) {
if (tid == 0) {
RTC_DCHECK_EQ(config.TemporalId(), 0);
return DecodeTargetIndication::kSwitch;
}
if (tid == config.TemporalId()) {
return DecodeTargetIndication::kDiscardable;
}
if (tid > config.TemporalId()) {
RTC_DCHECK_GT(tid, config.TemporalId());
return DecodeTargetIndication::kSwitch;
}
}
RTC_DCHECK_GT(sid, config.SpatialId());
RTC_DCHECK_GE(tid, config.TemporalId());
if (config.IsKeyframe() || config.Id() == kKey) {
return DecodeTargetIndication::kSwitch;
}
return DecodeTargetIndication::kRequired;
}
ScalabilityStructureFullSvc::FramePattern
ScalabilityStructureFullSvc::NextPattern() const {
switch (last_pattern_) {
case kNone:
return kKey;
case kDeltaT2B:
return kDeltaT0;
case kDeltaT2A:
if (TemporalLayerIsActive(1)) {
return kDeltaT1;
}
return kDeltaT0;
case kDeltaT1:
if (TemporalLayerIsActive(2)) {
return kDeltaT2B;
}
return kDeltaT0;
case kKey:
case kDeltaT0:
if (TemporalLayerIsActive(2)) {
return kDeltaT2A;
}
if (TemporalLayerIsActive(1)) {
return kDeltaT1;
}
return kDeltaT0;
}
RTC_NOTREACHED();
return kNone;
}
std::vector<ScalableVideoController::LayerFrameConfig>
ScalabilityStructureFullSvc::NextFrameConfig(bool restart) {
std::vector<LayerFrameConfig> configs;
if (active_decode_targets_.none()) {
last_pattern_ = kNone;
return configs;
}
configs.reserve(num_spatial_layers_);
if (last_pattern_ == kNone || restart) {
can_reference_t0_frame_for_spatial_id_.reset();
last_pattern_ = kNone;
}
FramePattern current_pattern = NextPattern();
absl::optional<int> spatial_dependency_buffer_id;
switch (current_pattern) {
case kDeltaT0:
case kKey:
// Disallow temporal references cross T0 on higher temporal layers.
can_reference_t1_frame_for_spatial_id_.reset();
for (int sid = 0; sid < num_spatial_layers_; ++sid) {
if (!DecodeTargetIsActive(sid, /*tid=*/0)) {
// Next frame from the spatial layer `sid` shouldn't depend on
// potentially old previous frame from the spatial layer `sid`.
can_reference_t0_frame_for_spatial_id_.reset(sid);
continue;
}
configs.emplace_back();
ScalableVideoController::LayerFrameConfig& config = configs.back();
config.Id(current_pattern).S(sid).T(0);
if (spatial_dependency_buffer_id) {
config.Reference(*spatial_dependency_buffer_id);
} else if (current_pattern == kKey) {
config.Keyframe();
}
if (can_reference_t0_frame_for_spatial_id_[sid]) {
config.ReferenceAndUpdate(BufferIndex(sid, /*tid=*/0));
} else {
// TODO(bugs.webrtc.org/11999): Propagate chain restart on delta frame
// to ChainDiffCalculator
config.Update(BufferIndex(sid, /*tid=*/0));
}
spatial_dependency_buffer_id = BufferIndex(sid, /*tid=*/0);
}
break;
case kDeltaT1:
for (int sid = 0; sid < num_spatial_layers_; ++sid) {
if (!DecodeTargetIsActive(sid, /*tid=*/1) ||
!can_reference_t0_frame_for_spatial_id_[sid]) {
continue;
}
configs.emplace_back();
ScalableVideoController::LayerFrameConfig& config = configs.back();
config.Id(current_pattern).S(sid).T(1);
// Temporal reference.
config.Reference(BufferIndex(sid, /*tid=*/0));
// Spatial reference unless this is the lowest active spatial layer.
if (spatial_dependency_buffer_id) {
config.Reference(*spatial_dependency_buffer_id);
}
// No frame reference top layer frame, so no need save it into a buffer.
if (num_temporal_layers_ > 2 || sid < num_spatial_layers_ - 1) {
config.Update(BufferIndex(sid, /*tid=*/1));
}
spatial_dependency_buffer_id = BufferIndex(sid, /*tid=*/1);
}
break;
case kDeltaT2A:
case kDeltaT2B:
for (int sid = 0; sid < num_spatial_layers_; ++sid) {
if (!DecodeTargetIsActive(sid, /*tid=*/2) ||
!can_reference_t0_frame_for_spatial_id_[sid]) {
continue;
}
configs.emplace_back();
ScalableVideoController::LayerFrameConfig& config = configs.back();
config.Id(current_pattern).S(sid).T(2);
// Temporal reference.
if (current_pattern == kDeltaT2B &&
can_reference_t1_frame_for_spatial_id_[sid]) {
config.Reference(BufferIndex(sid, /*tid=*/1));
} else {
config.Reference(BufferIndex(sid, /*tid=*/0));
}
// Spatial reference unless this is the lowest active spatial layer.
if (spatial_dependency_buffer_id) {
config.Reference(*spatial_dependency_buffer_id);
}
// No frame reference top layer frame, so no need save it into a buffer.
if (sid < num_spatial_layers_ - 1) {
config.Update(BufferIndex(sid, /*tid=*/2));
}
spatial_dependency_buffer_id = BufferIndex(sid, /*tid=*/2);
}
break;
case kNone:
RTC_NOTREACHED();
break;
}
if (configs.empty() && !restart) {
RTC_LOG(LS_WARNING) << "Failed to generate configuration for L"
<< num_spatial_layers_ << "T" << num_temporal_layers_
<< " with active decode targets "
<< active_decode_targets_.to_string('-').substr(
active_decode_targets_.size() -
num_spatial_layers_ * num_temporal_layers_)
<< " and transition from "
<< kFramePatternNames[last_pattern_] << " to "
<< kFramePatternNames[current_pattern]
<< ". Resetting.";
return NextFrameConfig(/*restart=*/true);
}
return configs;
}
GenericFrameInfo ScalabilityStructureFullSvc::OnEncodeDone(
const LayerFrameConfig& config) {
// When encoder drops all frames for a temporal unit, it is better to reuse
// old temporal pattern rather than switch to next one, thus switch to next
// pattern defered here from the `NextFrameConfig`.
// In particular creating VP9 references rely on this behavior.
last_pattern_ = static_cast<FramePattern>(config.Id());
if (config.TemporalId() == 0) {
can_reference_t0_frame_for_spatial_id_.set(config.SpatialId());
}
if (config.TemporalId() == 1) {
can_reference_t1_frame_for_spatial_id_.set(config.SpatialId());
}
GenericFrameInfo frame_info;
frame_info.spatial_id = config.SpatialId();
frame_info.temporal_id = config.TemporalId();
frame_info.encoder_buffers = config.Buffers();
frame_info.decode_target_indications.reserve(num_spatial_layers_ *
num_temporal_layers_);
for (int sid = 0; sid < num_spatial_layers_; ++sid) {
for (int tid = 0; tid < num_temporal_layers_; ++tid) {
frame_info.decode_target_indications.push_back(Dti(sid, tid, config));
}
}
if (config.TemporalId() == 0) {
frame_info.part_of_chain.resize(num_spatial_layers_);
for (int sid = 0; sid < num_spatial_layers_; ++sid) {
frame_info.part_of_chain[sid] = config.SpatialId() <= sid;
}
} else {
frame_info.part_of_chain.assign(num_spatial_layers_, false);
}
frame_info.active_decode_targets = active_decode_targets_;
return frame_info;
}
void ScalabilityStructureFullSvc::OnRatesUpdated(
const VideoBitrateAllocation& bitrates) {
for (int sid = 0; sid < num_spatial_layers_; ++sid) {
// Enable/disable spatial layers independetely.
bool active = true;
for (int tid = 0; tid < num_temporal_layers_; ++tid) {
// To enable temporal layer, require bitrates for lower temporal layers.
active = active && bitrates.GetBitrate(sid, tid) > 0;
SetDecodeTargetIsActive(sid, tid, active);
}
}
}
FrameDependencyStructure ScalabilityStructureL1T2::DependencyStructure() const {
FrameDependencyStructure structure;
structure.num_decode_targets = 2;
structure.num_chains = 1;
structure.decode_target_protected_by_chain = {0, 0};
structure.templates.resize(3);
structure.templates[0].T(0).Dtis("SS").ChainDiffs({0});
structure.templates[1].T(0).Dtis("SS").ChainDiffs({2}).FrameDiffs({2});
structure.templates[2].T(1).Dtis("-D").ChainDiffs({1}).FrameDiffs({1});
return structure;
}
FrameDependencyStructure ScalabilityStructureL1T3::DependencyStructure() const {
FrameDependencyStructure structure;
structure.num_decode_targets = 3;
structure.num_chains = 1;
structure.decode_target_protected_by_chain = {0, 0, 0};
structure.templates.resize(5);
structure.templates[0].T(0).Dtis("SSS").ChainDiffs({0});
structure.templates[1].T(0).Dtis("SSS").ChainDiffs({4}).FrameDiffs({4});
structure.templates[2].T(1).Dtis("-DS").ChainDiffs({2}).FrameDiffs({2});
structure.templates[3].T(2).Dtis("--D").ChainDiffs({1}).FrameDiffs({1});
structure.templates[4].T(2).Dtis("--D").ChainDiffs({3}).FrameDiffs({1});
return structure;
}
FrameDependencyStructure ScalabilityStructureL2T1::DependencyStructure() const {
FrameDependencyStructure structure;
structure.num_decode_targets = 2;
structure.num_chains = 2;
structure.decode_target_protected_by_chain = {0, 1};
structure.templates.resize(4);
structure.templates[0].S(0).Dtis("SR").ChainDiffs({2, 1}).FrameDiffs({2});
structure.templates[1].S(0).Dtis("SS").ChainDiffs({0, 0});
structure.templates[2].S(1).Dtis("-S").ChainDiffs({1, 1}).FrameDiffs({2, 1});
structure.templates[3].S(1).Dtis("-S").ChainDiffs({1, 1}).FrameDiffs({1});
return structure;
}
FrameDependencyStructure ScalabilityStructureL2T2::DependencyStructure() const {
FrameDependencyStructure structure;
structure.num_decode_targets = 4;
structure.num_chains = 2;
structure.decode_target_protected_by_chain = {0, 0, 1, 1};
structure.templates.resize(6);
auto& templates = structure.templates;
templates[0].S(0).T(0).Dtis("SSSS").ChainDiffs({0, 0});
templates[1].S(0).T(0).Dtis("SSRR").ChainDiffs({4, 3}).FrameDiffs({4});
templates[2].S(0).T(1).Dtis("-D-R").ChainDiffs({2, 1}).FrameDiffs({2});
templates[3].S(1).T(0).Dtis("--SS").ChainDiffs({1, 1}).FrameDiffs({1});
templates[4].S(1).T(0).Dtis("--SS").ChainDiffs({1, 1}).FrameDiffs({4, 1});
templates[5].S(1).T(1).Dtis("---D").ChainDiffs({3, 2}).FrameDiffs({2, 1});
return structure;
}
FrameDependencyStructure ScalabilityStructureL3T1::DependencyStructure() const {
FrameDependencyStructure structure;
structure.num_decode_targets = 3;
structure.num_chains = 3;
structure.decode_target_protected_by_chain = {0, 1, 2};
auto& templates = structure.templates;
templates.resize(6);
templates[0].S(0).Dtis("SRR").ChainDiffs({3, 2, 1}).FrameDiffs({3});
templates[1].S(0).Dtis("SSS").ChainDiffs({0, 0, 0});
templates[2].S(1).Dtis("-SR").ChainDiffs({1, 1, 1}).FrameDiffs({3, 1});
templates[3].S(1).Dtis("-SS").ChainDiffs({1, 1, 1}).FrameDiffs({1});
templates[4].S(2).Dtis("--S").ChainDiffs({2, 1, 1}).FrameDiffs({3, 1});
templates[5].S(2).Dtis("--S").ChainDiffs({2, 1, 1}).FrameDiffs({1});
return structure;
}
FrameDependencyStructure ScalabilityStructureL3T3::DependencyStructure() const {
FrameDependencyStructure structure;
structure.num_decode_targets = 9;
structure.num_chains = 3;
structure.decode_target_protected_by_chain = {0, 0, 0, 1, 1, 1, 2, 2, 2};
auto& t = structure.templates;
t.resize(15);
// Templates are shown in the order frames following them appear in the
// stream, but in `structure.templates` array templates are sorted by
// (`spatial_id`, `temporal_id`) since that is a dependency descriptor
// requirement. Indexes are written in hex for nicer alignment.
t[0x1].S(0).T(0).Dtis("SSSSSSSSS").ChainDiffs({0, 0, 0});
t[0x6].S(1).T(0).Dtis("---SSSSSS").ChainDiffs({1, 1, 1}).FrameDiffs({1});
t[0xB].S(2).T(0).Dtis("------SSS").ChainDiffs({2, 1, 1}).FrameDiffs({1});
t[0x3].S(0).T(2).Dtis("--D--R--R").ChainDiffs({3, 2, 1}).FrameDiffs({3});
t[0x8].S(1).T(2).Dtis("-----D--R").ChainDiffs({4, 3, 2}).FrameDiffs({3, 1});
t[0xD].S(2).T(2).Dtis("--------D").ChainDiffs({5, 4, 3}).FrameDiffs({3, 1});
t[0x2].S(0).T(1).Dtis("-DS-RR-RR").ChainDiffs({6, 5, 4}).FrameDiffs({6});
t[0x7].S(1).T(1).Dtis("----DS-RR").ChainDiffs({7, 6, 5}).FrameDiffs({6, 1});
t[0xC].S(2).T(1).Dtis("-------DS").ChainDiffs({8, 7, 6}).FrameDiffs({6, 1});
t[0x4].S(0).T(2).Dtis("--D--R--R").ChainDiffs({9, 8, 7}).FrameDiffs({3});
t[0x9].S(1).T(2).Dtis("-----D--R").ChainDiffs({10, 9, 8}).FrameDiffs({3, 1});
t[0xE].S(2).T(2).Dtis("--------D").ChainDiffs({11, 10, 9}).FrameDiffs({3, 1});
t[0x0].S(0).T(0).Dtis("SSSRRRRRR").ChainDiffs({12, 11, 10}).FrameDiffs({12});
t[0x5].S(1).T(0).Dtis("---SSSRRR").ChainDiffs({1, 1, 1}).FrameDiffs({12, 1});
t[0xA].S(2).T(0).Dtis("------SSS").ChainDiffs({2, 1, 1}).FrameDiffs({12, 1});
return structure;
}
} // namespace webrtc