webrtc/modules/audio_processing/aec3/suppression_gain_unittest.cc
Gustaf Ullberg a63d152423 AEC3: Unbounded echo spectrum for dominant nearend detection.
The dominant nearend detector uses the residual echo spectrum for
determining whether in nearend state. The residual echo spectrum in
computed using the ERLE. To reduce the risk of echo leaks in the
suppressor, the ERLE is capped. While minimizing echo leaks, the
capping of the ERLE can affect the dominant nearend classification
negatively as the residual echo spectrum is often over estimated.

This change enables the dominant nearend detector to use a residual
echo spectrum computed with a virtually non-capped ERLE. This ERLE
is only used for dominant nearend detection and leads to increased
transparency.

The feature is currently disabled by default and can be enabled
with the field trial "WebRTC-Aec3UseUnboundedEchoSpectrum".

Bug: webrtc:12870
Change-Id: Icb675c6f5d42ab9286e623b5fb38424d5c9cbee4
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/221920
Reviewed-by: Jesus de Vicente Pena <devicentepena@webrtc.org>
Commit-Queue: Gustaf Ullberg <gustaf@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#34270}
2021-06-11 13:30:00 +00:00

154 lines
6.3 KiB
C++

/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/suppression_gain.h"
#include "modules/audio_processing/aec3/aec_state.h"
#include "modules/audio_processing/aec3/render_delay_buffer.h"
#include "modules/audio_processing/aec3/subtractor.h"
#include "modules/audio_processing/aec3/subtractor_output.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "rtc_base/checks.h"
#include "system_wrappers/include/cpu_features_wrapper.h"
#include "test/gtest.h"
namespace webrtc {
namespace aec3 {
#if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID)
// Verifies that the check for non-null output gains works.
TEST(SuppressionGainDeathTest, NullOutputGains) {
std::vector<std::array<float, kFftLengthBy2Plus1>> E2(1, {0.0f});
std::vector<std::array<float, kFftLengthBy2Plus1>> R2(1, {0.0f});
std::vector<std::array<float, kFftLengthBy2Plus1>> R2_unbounded(1, {0.0f});
std::vector<std::array<float, kFftLengthBy2Plus1>> S2(1);
std::vector<std::array<float, kFftLengthBy2Plus1>> N2(1, {0.0f});
for (auto& S2_k : S2) {
S2_k.fill(0.1f);
}
FftData E;
FftData Y;
E.re.fill(0.0f);
E.im.fill(0.0f);
Y.re.fill(0.0f);
Y.im.fill(0.0f);
float high_bands_gain;
AecState aec_state(EchoCanceller3Config{}, 1);
EXPECT_DEATH(
SuppressionGain(EchoCanceller3Config{}, DetectOptimization(), 16000, 1)
.GetGain(E2, S2, R2, R2_unbounded, N2,
RenderSignalAnalyzer((EchoCanceller3Config{})), aec_state,
std::vector<std::vector<std::vector<float>>>(
3, std::vector<std::vector<float>>(
1, std::vector<float>(kBlockSize, 0.0f))),
false, &high_bands_gain, nullptr),
"");
}
#endif
// Does a sanity check that the gains are correctly computed.
TEST(SuppressionGain, BasicGainComputation) {
constexpr size_t kNumRenderChannels = 1;
constexpr size_t kNumCaptureChannels = 2;
constexpr int kSampleRateHz = 16000;
constexpr size_t kNumBands = NumBandsForRate(kSampleRateHz);
SuppressionGain suppression_gain(EchoCanceller3Config(), DetectOptimization(),
kSampleRateHz, kNumCaptureChannels);
RenderSignalAnalyzer analyzer(EchoCanceller3Config{});
float high_bands_gain;
std::vector<std::array<float, kFftLengthBy2Plus1>> E2(kNumCaptureChannels);
std::vector<std::array<float, kFftLengthBy2Plus1>> S2(kNumCaptureChannels,
{0.0f});
std::vector<std::array<float, kFftLengthBy2Plus1>> Y2(kNumCaptureChannels);
std::vector<std::array<float, kFftLengthBy2Plus1>> R2(kNumCaptureChannels);
std::vector<std::array<float, kFftLengthBy2Plus1>> R2_unbounded(
kNumCaptureChannels);
std::vector<std::array<float, kFftLengthBy2Plus1>> N2(kNumCaptureChannels);
std::array<float, kFftLengthBy2Plus1> g;
std::vector<SubtractorOutput> output(kNumCaptureChannels);
std::vector<std::vector<std::vector<float>>> x(
kNumBands, std::vector<std::vector<float>>(
kNumRenderChannels, std::vector<float>(kBlockSize, 0.0f)));
EchoCanceller3Config config;
AecState aec_state(config, kNumCaptureChannels);
ApmDataDumper data_dumper(42);
Subtractor subtractor(config, kNumRenderChannels, kNumCaptureChannels,
&data_dumper, DetectOptimization());
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
RenderDelayBuffer::Create(config, kSampleRateHz, kNumRenderChannels));
absl::optional<DelayEstimate> delay_estimate;
// Ensure that a strong noise is detected to mask any echoes.
for (size_t ch = 0; ch < kNumCaptureChannels; ++ch) {
E2[ch].fill(10.f);
Y2[ch].fill(10.f);
R2[ch].fill(0.1f);
R2_unbounded[ch].fill(0.1f);
N2[ch].fill(100.0f);
}
for (auto& subtractor_output : output) {
subtractor_output.Reset();
}
// Ensure that the gain is no longer forced to zero.
for (int k = 0; k <= kNumBlocksPerSecond / 5 + 1; ++k) {
aec_state.Update(delay_estimate, subtractor.FilterFrequencyResponses(),
subtractor.FilterImpulseResponses(),
*render_delay_buffer->GetRenderBuffer(), E2, Y2, output);
}
for (int k = 0; k < 100; ++k) {
aec_state.Update(delay_estimate, subtractor.FilterFrequencyResponses(),
subtractor.FilterImpulseResponses(),
*render_delay_buffer->GetRenderBuffer(), E2, Y2, output);
suppression_gain.GetGain(E2, S2, R2, R2_unbounded, N2, analyzer, aec_state,
x, false, &high_bands_gain, &g);
}
std::for_each(g.begin(), g.end(),
[](float a) { EXPECT_NEAR(1.0f, a, 0.001f); });
// Ensure that a strong nearend is detected to mask any echoes.
for (size_t ch = 0; ch < kNumCaptureChannels; ++ch) {
E2[ch].fill(100.f);
Y2[ch].fill(100.f);
R2[ch].fill(0.1f);
R2_unbounded[ch].fill(0.1f);
S2[ch].fill(0.1f);
N2[ch].fill(0.f);
}
for (int k = 0; k < 100; ++k) {
aec_state.Update(delay_estimate, subtractor.FilterFrequencyResponses(),
subtractor.FilterImpulseResponses(),
*render_delay_buffer->GetRenderBuffer(), E2, Y2, output);
suppression_gain.GetGain(E2, S2, R2, R2_unbounded, N2, analyzer, aec_state,
x, false, &high_bands_gain, &g);
}
std::for_each(g.begin(), g.end(),
[](float a) { EXPECT_NEAR(1.0f, a, 0.001f); });
// Add a strong echo to one of the channels and ensure that it is suppressed.
E2[1].fill(1000000000.0f);
R2[1].fill(10000000000000.0f);
R2_unbounded[1].fill(10000000000000.0f);
for (int k = 0; k < 10; ++k) {
suppression_gain.GetGain(E2, S2, R2, R2_unbounded, N2, analyzer, aec_state,
x, false, &high_bands_gain, &g);
}
std::for_each(g.begin(), g.end(),
[](float a) { EXPECT_NEAR(0.0f, a, 0.001f); });
}
} // namespace aec3
} // namespace webrtc