webrtc/modules/audio_processing/test/audio_processing_simulator.cc
Per Åhgren 524e878121 AEC3: Add state-specific suppressor behaviors
This CL allows selecting an echo suppressor behavior which is specific
for whether the nearend is dominant, or the echo is dominant.

The changes in this CL are bitexact.

Bug: webrtc:9660
Change-Id: Ie32e65efe47e692de6d6a22a7ad3b469d745fd6b
Reviewed-on: https://webrtc-review.googlesource.com/95725
Commit-Queue: Per Åhgren <peah@webrtc.org>
Reviewed-by: Gustaf Ullberg <gustaf@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#24434}
2018-08-24 21:43:36 +00:00

816 lines
31 KiB
C++

/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/test/audio_processing_simulator.h"
#include <algorithm>
#include <fstream>
#include <iostream>
#include <sstream>
#include <string>
#include <utility>
#include <vector>
#include "absl/memory/memory.h"
#include "api/audio/echo_canceller3_factory.h"
#include "common_audio/include/audio_util.h"
#include "modules/audio_processing/aec_dump/aec_dump_factory.h"
#include "modules/audio_processing/include/audio_processing.h"
#include "modules/audio_processing/test/fake_recording_device.h"
#include "rtc_base/checks.h"
#include "rtc_base/json.h"
#include "rtc_base/logging.h"
#include "rtc_base/stringutils.h"
namespace webrtc {
namespace test {
namespace {
// Class for parsing the AEC3 parameters from a JSON file and producing a config
// struct.
class Aec3ParametersParser {
public:
static EchoCanceller3Config Parse(bool verbose_output,
const std::string& filename) {
return Aec3ParametersParser(verbose_output).Parse(filename);
}
private:
explicit Aec3ParametersParser(bool verbose_output)
: verbose_output_(verbose_output) {}
void ReadParam(const Json::Value& root,
std::string param_name,
bool* param) const {
RTC_CHECK(param);
bool v;
if (rtc::GetBoolFromJsonObject(root, param_name, &v)) {
*param = v;
if (verbose_output_) {
std::cout << param_name << ":" << (*param ? "true" : "false")
<< std::endl;
}
}
}
void ReadParam(const Json::Value& root,
std::string param_name,
size_t* param) const {
RTC_CHECK(param);
int v;
if (rtc::GetIntFromJsonObject(root, param_name, &v)) {
*param = v;
if (verbose_output_) {
std::cout << param_name << ":" << *param << std::endl;
}
}
}
void ReadParam(const Json::Value& root,
std::string param_name,
int* param) const {
RTC_CHECK(param);
int v;
if (rtc::GetIntFromJsonObject(root, param_name, &v)) {
*param = v;
if (verbose_output_) {
std::cout << param_name << ":" << *param << std::endl;
}
}
}
void ReadParam(const Json::Value& root,
std::string param_name,
float* param) const {
RTC_CHECK(param);
double v;
if (rtc::GetDoubleFromJsonObject(root, param_name, &v)) {
*param = static_cast<float>(v);
if (verbose_output_) {
std::cout << param_name << ":" << *param << std::endl;
}
}
}
void ReadParam(const Json::Value& root,
std::string param_name,
EchoCanceller3Config::Filter::MainConfiguration* param) const {
RTC_CHECK(param);
Json::Value json_array;
if (rtc::GetValueFromJsonObject(root, param_name, &json_array)) {
std::vector<double> v;
rtc::JsonArrayToDoubleVector(json_array, &v);
if (v.size() != 5) {
std::cout << "Incorrect array size for " << param_name << std::endl;
RTC_CHECK(false);
}
param->length_blocks = static_cast<size_t>(v[0]);
param->leakage_converged = static_cast<float>(v[1]);
param->leakage_diverged = static_cast<float>(v[2]);
param->error_floor = static_cast<float>(v[3]);
param->noise_gate = static_cast<float>(v[4]);
if (verbose_output_) {
std::cout << param_name << ":"
<< "[" << param->length_blocks << ","
<< param->leakage_converged << "," << param->leakage_diverged
<< "," << param->error_floor << "," << param->noise_gate
<< "]" << std::endl;
}
}
}
void ReadParam(
const Json::Value& root,
std::string param_name,
EchoCanceller3Config::Filter::ShadowConfiguration* param) const {
RTC_CHECK(param);
Json::Value json_array;
if (rtc::GetValueFromJsonObject(root, param_name, &json_array)) {
std::vector<double> v;
rtc::JsonArrayToDoubleVector(json_array, &v);
if (v.size() != 3) {
std::cout << "Incorrect array size for " << param_name << std::endl;
RTC_CHECK(false);
}
param->length_blocks = static_cast<size_t>(v[0]);
param->rate = static_cast<float>(v[1]);
param->noise_gate = static_cast<float>(v[2]);
if (verbose_output_) {
std::cout << param_name << ":"
<< "[" << param->length_blocks << "," << param->rate << ","
<< param->noise_gate << "]" << std::endl;
}
}
}
void ReadParam(
const Json::Value& root,
std::string param_name,
EchoCanceller3Config::Suppressor::MaskingThresholds* param) const {
RTC_CHECK(param);
Json::Value json_array;
if (rtc::GetValueFromJsonObject(root, param_name, &json_array)) {
std::vector<double> v;
rtc::JsonArrayToDoubleVector(json_array, &v);
if (v.size() != 3) {
std::cout << "Incorrect array size for " << param_name << std::endl;
RTC_CHECK(false);
}
param->enr_transparent = static_cast<float>(v[0]);
param->enr_suppress = static_cast<float>(v[1]);
param->emr_transparent = static_cast<float>(v[2]);
if (verbose_output_) {
std::cout << param_name << ":"
<< "[" << param->enr_transparent << "," << param->enr_suppress
<< "," << param->emr_transparent << "]" << std::endl;
}
}
}
EchoCanceller3Config Parse(const std::string& filename) const {
EchoCanceller3Config cfg;
Json::Value root;
std::string s;
std::string json_string;
std::ifstream f(filename.c_str());
if (f.fail()) {
std::cout << "Failed to open the file " << filename << std::endl;
RTC_CHECK(false);
}
while (std::getline(f, s)) {
json_string += s;
}
bool success = Json::Reader().parse(json_string, root);
if (!success) {
std::cout << "Incorrect JSON format:" << std::endl;
std::cout << json_string << std::endl;
RTC_CHECK(false);
}
if (verbose_output_) {
std::cout << "AEC3 Parameters from JSON input:" << std::endl;
}
Json::Value section;
if (rtc::GetValueFromJsonObject(root, "delay", &section)) {
ReadParam(section, "default_delay", &cfg.delay.default_delay);
ReadParam(section, "down_sampling_factor",
&cfg.delay.down_sampling_factor);
ReadParam(section, "num_filters", &cfg.delay.num_filters);
ReadParam(section, "api_call_jitter_blocks",
&cfg.delay.api_call_jitter_blocks);
ReadParam(section, "min_echo_path_delay_blocks",
&cfg.delay.min_echo_path_delay_blocks);
ReadParam(section, "delay_headroom_blocks",
&cfg.delay.delay_headroom_blocks);
ReadParam(section, "hysteresis_limit_1_blocks",
&cfg.delay.hysteresis_limit_1_blocks);
ReadParam(section, "hysteresis_limit_2_blocks",
&cfg.delay.hysteresis_limit_2_blocks);
ReadParam(section, "skew_hysteresis_blocks",
&cfg.delay.skew_hysteresis_blocks);
}
if (rtc::GetValueFromJsonObject(root, "filter", &section)) {
ReadParam(section, "main", &cfg.filter.main);
ReadParam(section, "shadow", &cfg.filter.shadow);
ReadParam(section, "main_initial", &cfg.filter.main_initial);
ReadParam(section, "shadow_initial", &cfg.filter.shadow_initial);
ReadParam(section, "config_change_duration_blocks",
&cfg.filter.config_change_duration_blocks);
ReadParam(section, "initial_state_seconds",
&cfg.filter.initial_state_seconds);
ReadParam(section, "conservative_initial_phase",
&cfg.filter.conservative_initial_phase);
}
if (rtc::GetValueFromJsonObject(root, "erle", &section)) {
ReadParam(section, "min", &cfg.erle.min);
ReadParam(section, "max_l", &cfg.erle.max_l);
ReadParam(section, "max_h", &cfg.erle.max_h);
}
if (rtc::GetValueFromJsonObject(root, "ep_strength", &section)) {
ReadParam(section, "lf", &cfg.ep_strength.lf);
ReadParam(section, "mf", &cfg.ep_strength.mf);
ReadParam(section, "hf", &cfg.ep_strength.hf);
ReadParam(section, "default_len", &cfg.ep_strength.default_len);
ReadParam(section, "reverb_based_on_render",
&cfg.ep_strength.reverb_based_on_render);
ReadParam(section, "echo_can_saturate",
&cfg.ep_strength.echo_can_saturate);
ReadParam(section, "bounded_erl", &cfg.ep_strength.bounded_erl);
}
if (rtc::GetValueFromJsonObject(root, "gain_mask", &section)) {
ReadParam(section, "m1", &cfg.gain_mask.m1);
ReadParam(section, "m2", &cfg.gain_mask.m2);
ReadParam(section, "m3", &cfg.gain_mask.m3);
ReadParam(section, "m5", &cfg.gain_mask.m5);
ReadParam(section, "m6", &cfg.gain_mask.m6);
ReadParam(section, "m7", &cfg.gain_mask.m7);
ReadParam(section, "m8", &cfg.gain_mask.m8);
ReadParam(section, "m9", &cfg.gain_mask.m9);
ReadParam(section, "gain_curve_offset", &cfg.gain_mask.gain_curve_offset);
ReadParam(section, "gain_curve_slope", &cfg.gain_mask.gain_curve_slope);
ReadParam(section, "temporal_masking_lf",
&cfg.gain_mask.temporal_masking_lf);
ReadParam(section, "temporal_masking_hf",
&cfg.gain_mask.temporal_masking_hf);
ReadParam(section, "temporal_masking_lf_bands",
&cfg.gain_mask.temporal_masking_lf_bands);
}
if (rtc::GetValueFromJsonObject(root, "echo_audibility", &section)) {
ReadParam(section, "low_render_limit",
&cfg.echo_audibility.low_render_limit);
ReadParam(section, "normal_render_limit",
&cfg.echo_audibility.normal_render_limit);
ReadParam(section, "floor_power", &cfg.echo_audibility.floor_power);
ReadParam(section, "audibility_threshold_lf",
&cfg.echo_audibility.audibility_threshold_lf);
ReadParam(section, "audibility_threshold_mf",
&cfg.echo_audibility.audibility_threshold_mf);
ReadParam(section, "audibility_threshold_hf",
&cfg.echo_audibility.audibility_threshold_hf);
ReadParam(section, "use_stationary_properties",
&cfg.echo_audibility.use_stationary_properties);
}
if (rtc::GetValueFromJsonObject(root, "echo_removal_control", &section)) {
Json::Value subsection;
if (rtc::GetValueFromJsonObject(section, "gain_rampup", &subsection)) {
ReadParam(subsection, "initial_gain",
&cfg.echo_removal_control.gain_rampup.initial_gain);
ReadParam(subsection, "first_non_zero_gain",
&cfg.echo_removal_control.gain_rampup.first_non_zero_gain);
ReadParam(subsection, "non_zero_gain_blocks",
&cfg.echo_removal_control.gain_rampup.non_zero_gain_blocks);
ReadParam(subsection, "full_gain_blocks",
&cfg.echo_removal_control.gain_rampup.full_gain_blocks);
}
ReadParam(section, "has_clock_drift",
&cfg.echo_removal_control.has_clock_drift);
ReadParam(section, "linear_and_stable_echo_path",
&cfg.echo_removal_control.linear_and_stable_echo_path);
}
if (rtc::GetValueFromJsonObject(root, "echo_model", &section)) {
Json::Value subsection;
ReadParam(section, "noise_floor_hold", &cfg.echo_model.noise_floor_hold);
ReadParam(section, "min_noise_floor_power",
&cfg.echo_model.min_noise_floor_power);
ReadParam(section, "stationary_gate_slope",
&cfg.echo_model.stationary_gate_slope);
ReadParam(section, "noise_gate_power", &cfg.echo_model.noise_gate_power);
ReadParam(section, "noise_gate_slope", &cfg.echo_model.noise_gate_slope);
ReadParam(section, "render_pre_window_size",
&cfg.echo_model.render_pre_window_size);
ReadParam(section, "render_post_window_size",
&cfg.echo_model.render_post_window_size);
ReadParam(section, "render_pre_window_size_init",
&cfg.echo_model.render_pre_window_size_init);
ReadParam(section, "render_post_window_size_init",
&cfg.echo_model.render_post_window_size_init);
ReadParam(section, "nonlinear_hold", &cfg.echo_model.nonlinear_hold);
ReadParam(section, "nonlinear_release",
&cfg.echo_model.nonlinear_release);
}
Json::Value subsection;
if (rtc::GetValueFromJsonObject(root, "suppressor", &section)) {
ReadParam(section, "nearend_average_blocks",
&cfg.suppressor.nearend_average_blocks);
if (rtc::GetValueFromJsonObject(section, "normal_tuning", &subsection)) {
ReadParam(subsection, "mask_lf", &cfg.suppressor.normal_tuning.mask_lf);
ReadParam(subsection, "mask_hf", &cfg.suppressor.normal_tuning.mask_hf);
ReadParam(subsection, "max_inc_factor",
&cfg.suppressor.normal_tuning.max_inc_factor);
ReadParam(subsection, "max_dec_factor_lf",
&cfg.suppressor.normal_tuning.max_dec_factor_lf);
}
if (rtc::GetValueFromJsonObject(section, "nearend_tuning", &subsection)) {
ReadParam(subsection, "mask_lf",
&cfg.suppressor.nearend_tuning.mask_lf);
ReadParam(subsection, "mask_hf",
&cfg.suppressor.nearend_tuning.mask_hf);
ReadParam(subsection, "max_inc_factor",
&cfg.suppressor.nearend_tuning.max_inc_factor);
ReadParam(subsection, "max_dec_factor_lf",
&cfg.suppressor.nearend_tuning.max_dec_factor_lf);
}
if (rtc::GetValueFromJsonObject(section, "dominant_nearend_detection",
&subsection)) {
ReadParam(subsection, "enr_threshold",
&cfg.suppressor.dominant_nearend_detection.enr_threshold);
ReadParam(subsection, "snr_threshold",
&cfg.suppressor.dominant_nearend_detection.snr_threshold);
ReadParam(subsection, "hold_duration",
&cfg.suppressor.dominant_nearend_detection.hold_duration);
ReadParam(subsection, "trigger_threshold",
&cfg.suppressor.dominant_nearend_detection.trigger_threshold);
}
ReadParam(section, "floor_first_increase",
&cfg.suppressor.floor_first_increase);
ReadParam(section, "enforce_transparent",
&cfg.suppressor.enforce_transparent);
ReadParam(section, "enforce_empty_higher_bands",
&cfg.suppressor.enforce_empty_higher_bands);
}
std::cout << std::endl;
return cfg;
}
const bool verbose_output_;
};
void CopyFromAudioFrame(const AudioFrame& src, ChannelBuffer<float>* dest) {
RTC_CHECK_EQ(src.num_channels_, dest->num_channels());
RTC_CHECK_EQ(src.samples_per_channel_, dest->num_frames());
// Copy the data from the input buffer.
std::vector<float> tmp(src.samples_per_channel_ * src.num_channels_);
S16ToFloat(src.data(), tmp.size(), tmp.data());
Deinterleave(tmp.data(), src.samples_per_channel_, src.num_channels_,
dest->channels());
}
std::string GetIndexedOutputWavFilename(const std::string& wav_name,
int counter) {
std::stringstream ss;
ss << wav_name.substr(0, wav_name.size() - 4) << "_" << counter
<< wav_name.substr(wav_name.size() - 4);
return ss.str();
}
void WriteEchoLikelihoodGraphFileHeader(std::ofstream* output_file) {
(*output_file) << "import numpy as np" << std::endl
<< "import matplotlib.pyplot as plt" << std::endl
<< "y = np.array([";
}
void WriteEchoLikelihoodGraphFileFooter(std::ofstream* output_file) {
(*output_file) << "])" << std::endl
<< "if __name__ == '__main__':" << std::endl
<< " x = np.arange(len(y))*.01" << std::endl
<< " plt.plot(x, y)" << std::endl
<< " plt.ylabel('Echo likelihood')" << std::endl
<< " plt.xlabel('Time (s)')" << std::endl
<< " plt.ylim([0,1])" << std::endl
<< " plt.show()" << std::endl;
}
} // namespace
SimulationSettings::SimulationSettings() = default;
SimulationSettings::SimulationSettings(const SimulationSettings&) = default;
SimulationSettings::~SimulationSettings() = default;
void CopyToAudioFrame(const ChannelBuffer<float>& src, AudioFrame* dest) {
RTC_CHECK_EQ(src.num_channels(), dest->num_channels_);
RTC_CHECK_EQ(src.num_frames(), dest->samples_per_channel_);
int16_t* dest_data = dest->mutable_data();
for (size_t ch = 0; ch < dest->num_channels_; ++ch) {
for (size_t sample = 0; sample < dest->samples_per_channel_; ++sample) {
dest_data[sample * dest->num_channels_ + ch] =
src.channels()[ch][sample] * 32767;
}
}
}
AudioProcessingSimulator::AudioProcessingSimulator(
const SimulationSettings& settings,
std::unique_ptr<AudioProcessingBuilder> ap_builder)
: settings_(settings),
ap_builder_(ap_builder ? std::move(ap_builder)
: absl::make_unique<AudioProcessingBuilder>()),
analog_mic_level_(settings.initial_mic_level),
fake_recording_device_(
settings.initial_mic_level,
settings_.simulate_mic_gain ? *settings.simulated_mic_kind : 0),
worker_queue_("file_writer_task_queue") {
if (settings_.ed_graph_output_filename &&
!settings_.ed_graph_output_filename->empty()) {
residual_echo_likelihood_graph_writer_.open(
*settings_.ed_graph_output_filename);
RTC_CHECK(residual_echo_likelihood_graph_writer_.is_open());
WriteEchoLikelihoodGraphFileHeader(&residual_echo_likelihood_graph_writer_);
}
if (settings_.simulate_mic_gain)
RTC_LOG(LS_VERBOSE) << "Simulating analog mic gain";
}
AudioProcessingSimulator::~AudioProcessingSimulator() {
if (residual_echo_likelihood_graph_writer_.is_open()) {
WriteEchoLikelihoodGraphFileFooter(&residual_echo_likelihood_graph_writer_);
residual_echo_likelihood_graph_writer_.close();
}
}
AudioProcessingSimulator::ScopedTimer::~ScopedTimer() {
int64_t interval = rtc::TimeNanos() - start_time_;
proc_time_->sum += interval;
proc_time_->max = std::max(proc_time_->max, interval);
proc_time_->min = std::min(proc_time_->min, interval);
}
void AudioProcessingSimulator::ProcessStream(bool fixed_interface) {
// Optionally use the fake recording device to simulate analog gain.
if (settings_.simulate_mic_gain) {
if (settings_.aec_dump_input_filename) {
// When the analog gain is simulated and an AEC dump is used as input, set
// the undo level to |aec_dump_mic_level_| to virtually restore the
// unmodified microphone signal level.
fake_recording_device_.SetUndoMicLevel(aec_dump_mic_level_);
}
if (fixed_interface) {
fake_recording_device_.SimulateAnalogGain(&fwd_frame_);
} else {
fake_recording_device_.SimulateAnalogGain(in_buf_.get());
}
// Notify the current mic level to AGC.
RTC_CHECK_EQ(AudioProcessing::kNoError,
ap_->gain_control()->set_stream_analog_level(
fake_recording_device_.MicLevel()));
} else {
// Notify the current mic level to AGC.
RTC_CHECK_EQ(AudioProcessing::kNoError,
ap_->gain_control()->set_stream_analog_level(
settings_.aec_dump_input_filename ? aec_dump_mic_level_
: analog_mic_level_));
}
// Process the current audio frame.
if (fixed_interface) {
{
const auto st = ScopedTimer(mutable_proc_time());
RTC_CHECK_EQ(AudioProcessing::kNoError, ap_->ProcessStream(&fwd_frame_));
}
CopyFromAudioFrame(fwd_frame_, out_buf_.get());
} else {
const auto st = ScopedTimer(mutable_proc_time());
RTC_CHECK_EQ(AudioProcessing::kNoError,
ap_->ProcessStream(in_buf_->channels(), in_config_,
out_config_, out_buf_->channels()));
}
// Store the mic level suggested by AGC.
// Note that when the analog gain is simulated and an AEC dump is used as
// input, |analog_mic_level_| will not be used with set_stream_analog_level().
analog_mic_level_ = ap_->gain_control()->stream_analog_level();
if (settings_.simulate_mic_gain) {
fake_recording_device_.SetMicLevel(analog_mic_level_);
}
if (buffer_writer_) {
buffer_writer_->Write(*out_buf_);
}
if (residual_echo_likelihood_graph_writer_.is_open()) {
auto stats = ap_->GetStatistics();
residual_echo_likelihood_graph_writer_ << stats.residual_echo_likelihood
<< ", ";
}
++num_process_stream_calls_;
}
void AudioProcessingSimulator::ProcessReverseStream(bool fixed_interface) {
if (fixed_interface) {
const auto st = ScopedTimer(mutable_proc_time());
RTC_CHECK_EQ(AudioProcessing::kNoError,
ap_->ProcessReverseStream(&rev_frame_));
CopyFromAudioFrame(rev_frame_, reverse_out_buf_.get());
} else {
const auto st = ScopedTimer(mutable_proc_time());
RTC_CHECK_EQ(AudioProcessing::kNoError,
ap_->ProcessReverseStream(
reverse_in_buf_->channels(), reverse_in_config_,
reverse_out_config_, reverse_out_buf_->channels()));
}
if (reverse_buffer_writer_) {
reverse_buffer_writer_->Write(*reverse_out_buf_);
}
++num_reverse_process_stream_calls_;
}
void AudioProcessingSimulator::SetupBuffersConfigsOutputs(
int input_sample_rate_hz,
int output_sample_rate_hz,
int reverse_input_sample_rate_hz,
int reverse_output_sample_rate_hz,
int input_num_channels,
int output_num_channels,
int reverse_input_num_channels,
int reverse_output_num_channels) {
in_config_ = StreamConfig(input_sample_rate_hz, input_num_channels);
in_buf_.reset(new ChannelBuffer<float>(
rtc::CheckedDivExact(input_sample_rate_hz, kChunksPerSecond),
input_num_channels));
reverse_in_config_ =
StreamConfig(reverse_input_sample_rate_hz, reverse_input_num_channels);
reverse_in_buf_.reset(new ChannelBuffer<float>(
rtc::CheckedDivExact(reverse_input_sample_rate_hz, kChunksPerSecond),
reverse_input_num_channels));
out_config_ = StreamConfig(output_sample_rate_hz, output_num_channels);
out_buf_.reset(new ChannelBuffer<float>(
rtc::CheckedDivExact(output_sample_rate_hz, kChunksPerSecond),
output_num_channels));
reverse_out_config_ =
StreamConfig(reverse_output_sample_rate_hz, reverse_output_num_channels);
reverse_out_buf_.reset(new ChannelBuffer<float>(
rtc::CheckedDivExact(reverse_output_sample_rate_hz, kChunksPerSecond),
reverse_output_num_channels));
fwd_frame_.sample_rate_hz_ = input_sample_rate_hz;
fwd_frame_.samples_per_channel_ =
rtc::CheckedDivExact(fwd_frame_.sample_rate_hz_, kChunksPerSecond);
fwd_frame_.num_channels_ = input_num_channels;
rev_frame_.sample_rate_hz_ = reverse_input_sample_rate_hz;
rev_frame_.samples_per_channel_ =
rtc::CheckedDivExact(rev_frame_.sample_rate_hz_, kChunksPerSecond);
rev_frame_.num_channels_ = reverse_input_num_channels;
if (settings_.use_verbose_logging) {
rtc::LogMessage::LogToDebug(rtc::LS_VERBOSE);
std::cout << "Sample rates:" << std::endl;
std::cout << " Forward input: " << input_sample_rate_hz << std::endl;
std::cout << " Forward output: " << output_sample_rate_hz << std::endl;
std::cout << " Reverse input: " << reverse_input_sample_rate_hz
<< std::endl;
std::cout << " Reverse output: " << reverse_output_sample_rate_hz
<< std::endl;
std::cout << "Number of channels: " << std::endl;
std::cout << " Forward input: " << input_num_channels << std::endl;
std::cout << " Forward output: " << output_num_channels << std::endl;
std::cout << " Reverse input: " << reverse_input_num_channels << std::endl;
std::cout << " Reverse output: " << reverse_output_num_channels
<< std::endl;
}
SetupOutput();
}
void AudioProcessingSimulator::SetupOutput() {
if (settings_.output_filename) {
std::string filename;
if (settings_.store_intermediate_output) {
filename = GetIndexedOutputWavFilename(*settings_.output_filename,
output_reset_counter_);
} else {
filename = *settings_.output_filename;
}
std::unique_ptr<WavWriter> out_file(
new WavWriter(filename, out_config_.sample_rate_hz(),
static_cast<size_t>(out_config_.num_channels())));
buffer_writer_.reset(new ChannelBufferWavWriter(std::move(out_file)));
}
if (settings_.reverse_output_filename) {
std::string filename;
if (settings_.store_intermediate_output) {
filename = GetIndexedOutputWavFilename(*settings_.reverse_output_filename,
output_reset_counter_);
} else {
filename = *settings_.reverse_output_filename;
}
std::unique_ptr<WavWriter> reverse_out_file(
new WavWriter(filename, reverse_out_config_.sample_rate_hz(),
static_cast<size_t>(reverse_out_config_.num_channels())));
reverse_buffer_writer_.reset(
new ChannelBufferWavWriter(std::move(reverse_out_file)));
}
++output_reset_counter_;
}
void AudioProcessingSimulator::DestroyAudioProcessor() {
if (settings_.aec_dump_output_filename) {
ap_->DetachAecDump();
}
}
void AudioProcessingSimulator::CreateAudioProcessor() {
Config config;
AudioProcessing::Config apm_config;
std::unique_ptr<EchoControlFactory> echo_control_factory;
if (settings_.use_ts) {
config.Set<ExperimentalNs>(new ExperimentalNs(*settings_.use_ts));
}
if (settings_.use_ie) {
config.Set<Intelligibility>(new Intelligibility(*settings_.use_ie));
}
if (settings_.use_agc2) {
apm_config.gain_controller2.enabled = *settings_.use_agc2;
apm_config.gain_controller2.fixed_gain_db = settings_.agc2_fixed_gain_db;
}
if (settings_.use_pre_amplifier) {
apm_config.pre_amplifier.enabled = *settings_.use_pre_amplifier;
apm_config.pre_amplifier.fixed_gain_factor =
settings_.pre_amplifier_gain_factor;
}
if (settings_.use_aec3 && *settings_.use_aec3) {
EchoCanceller3Config cfg;
if (settings_.aec3_settings_filename) {
cfg = Aec3ParametersParser::Parse(!settings_.use_quiet_output,
*settings_.aec3_settings_filename);
}
echo_control_factory.reset(new EchoCanceller3Factory(cfg));
}
if (settings_.use_hpf) {
apm_config.high_pass_filter.enabled = *settings_.use_hpf;
}
if (settings_.use_refined_adaptive_filter) {
config.Set<RefinedAdaptiveFilter>(
new RefinedAdaptiveFilter(*settings_.use_refined_adaptive_filter));
}
config.Set<ExtendedFilter>(new ExtendedFilter(
!settings_.use_extended_filter || *settings_.use_extended_filter));
config.Set<DelayAgnostic>(new DelayAgnostic(!settings_.use_delay_agnostic ||
*settings_.use_delay_agnostic));
config.Set<ExperimentalAgc>(new ExperimentalAgc(
!settings_.use_experimental_agc || *settings_.use_experimental_agc,
!!settings_.use_experimental_agc_agc2_level_estimator &&
*settings_.use_experimental_agc_agc2_level_estimator,
!!settings_.experimental_agc_disable_digital_adaptive &&
*settings_.experimental_agc_disable_digital_adaptive));
if (settings_.use_ed) {
apm_config.residual_echo_detector.enabled = *settings_.use_ed;
}
RTC_CHECK(ap_builder_);
ap_.reset((*ap_builder_)
.SetEchoControlFactory(std::move(echo_control_factory))
.Create(config));
RTC_CHECK(ap_);
ap_->ApplyConfig(apm_config);
if (settings_.use_aec) {
RTC_CHECK_EQ(AudioProcessing::kNoError,
ap_->echo_cancellation()->Enable(*settings_.use_aec));
}
if (settings_.use_aecm) {
RTC_CHECK_EQ(AudioProcessing::kNoError,
ap_->echo_control_mobile()->Enable(*settings_.use_aecm));
}
if (settings_.use_agc) {
RTC_CHECK_EQ(AudioProcessing::kNoError,
ap_->gain_control()->Enable(*settings_.use_agc));
}
if (settings_.use_ns) {
RTC_CHECK_EQ(AudioProcessing::kNoError,
ap_->noise_suppression()->Enable(*settings_.use_ns));
}
if (settings_.use_le) {
RTC_CHECK_EQ(AudioProcessing::kNoError,
ap_->level_estimator()->Enable(*settings_.use_le));
}
if (settings_.use_vad) {
RTC_CHECK_EQ(AudioProcessing::kNoError,
ap_->voice_detection()->Enable(*settings_.use_vad));
}
if (settings_.use_agc_limiter) {
RTC_CHECK_EQ(AudioProcessing::kNoError, ap_->gain_control()->enable_limiter(
*settings_.use_agc_limiter));
}
if (settings_.agc_target_level) {
RTC_CHECK_EQ(AudioProcessing::kNoError,
ap_->gain_control()->set_target_level_dbfs(
*settings_.agc_target_level));
}
if (settings_.agc_compression_gain) {
RTC_CHECK_EQ(AudioProcessing::kNoError,
ap_->gain_control()->set_compression_gain_db(
*settings_.agc_compression_gain));
}
if (settings_.agc_mode) {
RTC_CHECK_EQ(
AudioProcessing::kNoError,
ap_->gain_control()->set_mode(
static_cast<webrtc::GainControl::Mode>(*settings_.agc_mode)));
}
if (settings_.use_drift_compensation) {
RTC_CHECK_EQ(AudioProcessing::kNoError,
ap_->echo_cancellation()->enable_drift_compensation(
*settings_.use_drift_compensation));
}
if (settings_.aec_suppression_level) {
RTC_CHECK_EQ(AudioProcessing::kNoError,
ap_->echo_cancellation()->set_suppression_level(
static_cast<webrtc::EchoCancellation::SuppressionLevel>(
*settings_.aec_suppression_level)));
}
if (settings_.aecm_routing_mode) {
RTC_CHECK_EQ(AudioProcessing::kNoError,
ap_->echo_control_mobile()->set_routing_mode(
static_cast<webrtc::EchoControlMobile::RoutingMode>(
*settings_.aecm_routing_mode)));
}
if (settings_.use_aecm_comfort_noise) {
RTC_CHECK_EQ(AudioProcessing::kNoError,
ap_->echo_control_mobile()->enable_comfort_noise(
*settings_.use_aecm_comfort_noise));
}
if (settings_.vad_likelihood) {
RTC_CHECK_EQ(AudioProcessing::kNoError,
ap_->voice_detection()->set_likelihood(
static_cast<webrtc::VoiceDetection::Likelihood>(
*settings_.vad_likelihood)));
}
if (settings_.ns_level) {
RTC_CHECK_EQ(
AudioProcessing::kNoError,
ap_->noise_suppression()->set_level(
static_cast<NoiseSuppression::Level>(*settings_.ns_level)));
}
if (settings_.use_ts) {
ap_->set_stream_key_pressed(*settings_.use_ts);
}
if (settings_.aec_dump_output_filename) {
ap_->AttachAecDump(AecDumpFactory::Create(
*settings_.aec_dump_output_filename, -1, &worker_queue_));
}
}
} // namespace test
} // namespace webrtc