mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-15 14:50:39 +01:00

This CL is the result of running include-what-you-use tool on part of the code base (audio target and dependencies) plus manual fixes. bug: webrtc:8311 Change-Id: I277d281ce943c3ecc1bd45fd8d83055931743604 Reviewed-on: https://webrtc-review.googlesource.com/c/106280 Commit-Queue: Yves Gerey <yvesg@google.com> Reviewed-by: Mirko Bonadei <mbonadei@webrtc.org> Reviewed-by: Patrik Höglund <phoglund@webrtc.org> Cr-Commit-Position: refs/heads/master@{#25311}
328 lines
12 KiB
C++
328 lines
12 KiB
C++
|
|
/*
|
|
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/audio_processing/aec3/residual_echo_estimator.h"
|
|
|
|
#include <stddef.h>
|
|
#include <algorithm>
|
|
#include <vector>
|
|
|
|
#include "api/array_view.h"
|
|
#include "modules/audio_processing/aec3/reverb_model.h"
|
|
#include "modules/audio_processing/aec3/reverb_model_fallback.h"
|
|
#include "rtc_base/checks.h"
|
|
#include "system_wrappers/include/field_trial.h"
|
|
|
|
namespace webrtc {
|
|
namespace {
|
|
|
|
bool EnableSoftTransparentMode() {
|
|
return !field_trial::IsEnabled("WebRTC-Aec3SoftTransparentModeKillSwitch");
|
|
}
|
|
|
|
bool OverrideEstimatedEchoPathGain() {
|
|
return !field_trial::IsEnabled("WebRTC-Aec3OverrideEchoPathGainKillSwitch");
|
|
}
|
|
|
|
bool UseFixedNonLinearReverbModel() {
|
|
return field_trial::IsEnabled(
|
|
"WebRTC-Aec3StandardNonlinearReverbModelKillSwitch");
|
|
}
|
|
|
|
// Computes the indexes that will be used for computing spectral power over
|
|
// the blocks surrounding the delay.
|
|
void GetRenderIndexesToAnalyze(
|
|
const VectorBuffer& spectrum_buffer,
|
|
const EchoCanceller3Config::EchoModel& echo_model,
|
|
int filter_delay_blocks,
|
|
bool gain_limiter_running,
|
|
int headroom,
|
|
int* idx_start,
|
|
int* idx_stop) {
|
|
RTC_DCHECK(idx_start);
|
|
RTC_DCHECK(idx_stop);
|
|
if (gain_limiter_running) {
|
|
if (static_cast<size_t>(headroom) >
|
|
echo_model.render_post_window_size_init) {
|
|
*idx_start = spectrum_buffer.OffsetIndex(
|
|
spectrum_buffer.read,
|
|
-static_cast<int>(echo_model.render_post_window_size_init));
|
|
} else {
|
|
*idx_start = spectrum_buffer.IncIndex(spectrum_buffer.write);
|
|
}
|
|
|
|
*idx_stop = spectrum_buffer.OffsetIndex(
|
|
spectrum_buffer.read, echo_model.render_pre_window_size_init);
|
|
} else {
|
|
size_t window_start;
|
|
size_t window_end;
|
|
window_start =
|
|
std::max(0, filter_delay_blocks -
|
|
static_cast<int>(echo_model.render_pre_window_size));
|
|
window_end = filter_delay_blocks +
|
|
static_cast<int>(echo_model.render_post_window_size);
|
|
*idx_start =
|
|
spectrum_buffer.OffsetIndex(spectrum_buffer.read, window_start);
|
|
*idx_stop =
|
|
spectrum_buffer.OffsetIndex(spectrum_buffer.read, window_end + 1);
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
ResidualEchoEstimator::ResidualEchoEstimator(const EchoCanceller3Config& config)
|
|
: config_(config),
|
|
soft_transparent_mode_(EnableSoftTransparentMode()),
|
|
override_estimated_echo_path_gain_(OverrideEstimatedEchoPathGain()),
|
|
use_fixed_nonlinear_reverb_model_(UseFixedNonLinearReverbModel()) {
|
|
if (config_.ep_strength.reverb_based_on_render) {
|
|
echo_reverb_.reset(new ReverbModel());
|
|
} else {
|
|
echo_reverb_fallback.reset(
|
|
new ReverbModelFallback(config_.filter.main.length_blocks));
|
|
}
|
|
Reset();
|
|
}
|
|
|
|
ResidualEchoEstimator::~ResidualEchoEstimator() = default;
|
|
|
|
void ResidualEchoEstimator::Estimate(
|
|
const AecState& aec_state,
|
|
const RenderBuffer& render_buffer,
|
|
const std::array<float, kFftLengthBy2Plus1>& S2_linear,
|
|
const std::array<float, kFftLengthBy2Plus1>& Y2,
|
|
std::array<float, kFftLengthBy2Plus1>* R2) {
|
|
RTC_DCHECK(R2);
|
|
|
|
// Estimate the power of the stationary noise in the render signal.
|
|
RenderNoisePower(render_buffer, &X2_noise_floor_, &X2_noise_floor_counter_);
|
|
|
|
// Estimate the residual echo power.
|
|
if (aec_state.UsableLinearEstimate()) {
|
|
LinearEstimate(S2_linear, aec_state.Erle(), aec_state.ErleUncertainty(),
|
|
R2);
|
|
|
|
// When there is saturated echo, assume the same spectral content as is
|
|
// present in the micropone signal.
|
|
if (aec_state.SaturatedEcho()) {
|
|
std::copy(Y2.begin(), Y2.end(), R2->begin());
|
|
}
|
|
|
|
// Adds the estimated unmodelled echo power to the residual echo power
|
|
// estimate.
|
|
if (echo_reverb_) {
|
|
echo_reverb_->AddReverb(
|
|
render_buffer.Spectrum(aec_state.FilterLengthBlocks() + 1),
|
|
aec_state.GetReverbFrequencyResponse(), aec_state.ReverbDecay(), *R2);
|
|
|
|
} else {
|
|
RTC_DCHECK(echo_reverb_fallback);
|
|
echo_reverb_fallback->AddEchoReverb(S2_linear,
|
|
aec_state.FilterDelayBlocks(),
|
|
aec_state.ReverbDecay(), R2);
|
|
}
|
|
|
|
} else {
|
|
// Estimate the echo generating signal power.
|
|
std::array<float, kFftLengthBy2Plus1> X2;
|
|
|
|
EchoGeneratingPower(render_buffer.GetSpectrumBuffer(), config_.echo_model,
|
|
render_buffer.Headroom(), aec_state.FilterDelayBlocks(),
|
|
aec_state.IsSuppressionGainLimitActive(),
|
|
!aec_state.UseStationaryProperties(), &X2);
|
|
|
|
// Subtract the stationary noise power to avoid stationary noise causing
|
|
// excessive echo suppression.
|
|
std::transform(X2.begin(), X2.end(), X2_noise_floor_.begin(), X2.begin(),
|
|
[&](float a, float b) {
|
|
return std::max(
|
|
0.f, a - config_.echo_model.stationary_gate_slope * b);
|
|
});
|
|
|
|
float echo_path_gain;
|
|
if (override_estimated_echo_path_gain_) {
|
|
echo_path_gain = aec_state.TransparentMode() && soft_transparent_mode_
|
|
? 0.01f
|
|
: config_.ep_strength.lf;
|
|
} else {
|
|
echo_path_gain = aec_state.TransparentMode() && soft_transparent_mode_
|
|
? 0.01f
|
|
: aec_state.EchoPathGain();
|
|
}
|
|
NonLinearEstimate(echo_path_gain, X2, Y2, R2);
|
|
|
|
// When there is saturated echo, assume the same spectral content as is
|
|
// present in the micropone signal.
|
|
if (aec_state.SaturatedEcho()) {
|
|
std::copy(Y2.begin(), Y2.end(), R2->begin());
|
|
}
|
|
|
|
if (!(aec_state.TransparentMode() && soft_transparent_mode_)) {
|
|
if (echo_reverb_) {
|
|
echo_reverb_->AddReverbNoFreqShaping(
|
|
render_buffer.Spectrum(aec_state.FilterDelayBlocks() + 1),
|
|
echo_path_gain * echo_path_gain, aec_state.ReverbDecay(), *R2);
|
|
} else {
|
|
RTC_DCHECK(echo_reverb_fallback);
|
|
echo_reverb_fallback->AddEchoReverb(*R2,
|
|
config_.filter.main.length_blocks,
|
|
aec_state.ReverbDecay(), R2);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (aec_state.UseStationaryProperties()) {
|
|
// Scale the echo according to echo audibility.
|
|
std::array<float, kFftLengthBy2Plus1> residual_scaling;
|
|
aec_state.GetResidualEchoScaling(residual_scaling);
|
|
for (size_t k = 0; k < R2->size(); ++k) {
|
|
(*R2)[k] *= residual_scaling[k];
|
|
if (residual_scaling[k] == 0.f) {
|
|
R2_hold_counter_[k] = 0;
|
|
}
|
|
}
|
|
}
|
|
if (!soft_transparent_mode_) {
|
|
// If the echo is deemed inaudible, set the residual echo to zero.
|
|
if (aec_state.TransparentMode()) {
|
|
R2->fill(0.f);
|
|
R2_old_.fill(0.f);
|
|
R2_hold_counter_.fill(0.f);
|
|
}
|
|
}
|
|
|
|
std::copy(R2->begin(), R2->end(), R2_old_.begin());
|
|
}
|
|
|
|
void ResidualEchoEstimator::Reset() {
|
|
if (echo_reverb_) {
|
|
echo_reverb_->Reset();
|
|
} else {
|
|
RTC_DCHECK(echo_reverb_fallback);
|
|
echo_reverb_fallback->Reset();
|
|
}
|
|
X2_noise_floor_counter_.fill(config_.echo_model.noise_floor_hold);
|
|
X2_noise_floor_.fill(config_.echo_model.min_noise_floor_power);
|
|
R2_old_.fill(0.f);
|
|
R2_hold_counter_.fill(0.f);
|
|
}
|
|
|
|
void ResidualEchoEstimator::LinearEstimate(
|
|
const std::array<float, kFftLengthBy2Plus1>& S2_linear,
|
|
const std::array<float, kFftLengthBy2Plus1>& erle,
|
|
absl::optional<float> erle_uncertainty,
|
|
std::array<float, kFftLengthBy2Plus1>* R2) {
|
|
std::fill(R2_hold_counter_.begin(), R2_hold_counter_.end(), 10.f);
|
|
if (erle_uncertainty) {
|
|
for (size_t k = 0; k < R2->size(); ++k) {
|
|
(*R2)[k] = S2_linear[k] * *erle_uncertainty;
|
|
}
|
|
} else {
|
|
std::transform(erle.begin(), erle.end(), S2_linear.begin(), R2->begin(),
|
|
[](float a, float b) {
|
|
RTC_DCHECK_LT(0.f, a);
|
|
return b / a;
|
|
});
|
|
}
|
|
}
|
|
|
|
void ResidualEchoEstimator::NonLinearEstimate(
|
|
float echo_path_gain,
|
|
const std::array<float, kFftLengthBy2Plus1>& X2,
|
|
const std::array<float, kFftLengthBy2Plus1>& Y2,
|
|
std::array<float, kFftLengthBy2Plus1>* R2) {
|
|
// Compute preliminary residual echo.
|
|
std::transform(X2.begin(), X2.end(), R2->begin(), [echo_path_gain](float a) {
|
|
return a * echo_path_gain * echo_path_gain;
|
|
});
|
|
|
|
if (use_fixed_nonlinear_reverb_model_) {
|
|
for (size_t k = 0; k < R2->size(); ++k) {
|
|
// Update hold counter.
|
|
R2_hold_counter_[k] = R2_old_[k] < (*R2)[k] ? 0 : R2_hold_counter_[k] + 1;
|
|
|
|
// Compute the residual echo by holding a maximum echo powers and an echo
|
|
// fading corresponding to a room with an RT60 value of about 50 ms.
|
|
(*R2)[k] =
|
|
R2_hold_counter_[k] < config_.echo_model.nonlinear_hold
|
|
? std::max((*R2)[k], R2_old_[k])
|
|
: std::min((*R2)[k] +
|
|
R2_old_[k] * config_.echo_model.nonlinear_release,
|
|
Y2[k]);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ResidualEchoEstimator::EchoGeneratingPower(
|
|
const VectorBuffer& spectrum_buffer,
|
|
const EchoCanceller3Config::EchoModel& echo_model,
|
|
int headroom_spectrum_buffer,
|
|
int filter_delay_blocks,
|
|
bool gain_limiter_running,
|
|
bool apply_noise_gating,
|
|
std::array<float, kFftLengthBy2Plus1>* X2) const {
|
|
int idx_stop, idx_start;
|
|
|
|
RTC_DCHECK(X2);
|
|
GetRenderIndexesToAnalyze(spectrum_buffer, config_.echo_model,
|
|
filter_delay_blocks, gain_limiter_running,
|
|
headroom_spectrum_buffer, &idx_start, &idx_stop);
|
|
|
|
X2->fill(0.f);
|
|
for (int k = idx_start; k != idx_stop; k = spectrum_buffer.IncIndex(k)) {
|
|
std::transform(X2->begin(), X2->end(), spectrum_buffer.buffer[k].begin(),
|
|
X2->begin(),
|
|
[](float a, float b) { return std::max(a, b); });
|
|
}
|
|
|
|
if (apply_noise_gating) {
|
|
// Apply soft noise gate.
|
|
std::for_each(X2->begin(), X2->end(), [&](float& a) {
|
|
if (config_.echo_model.noise_gate_power > a) {
|
|
a = std::max(0.f, a - config_.echo_model.noise_gate_slope *
|
|
(config_.echo_model.noise_gate_power - a));
|
|
}
|
|
});
|
|
}
|
|
}
|
|
|
|
void ResidualEchoEstimator::RenderNoisePower(
|
|
const RenderBuffer& render_buffer,
|
|
std::array<float, kFftLengthBy2Plus1>* X2_noise_floor,
|
|
std::array<int, kFftLengthBy2Plus1>* X2_noise_floor_counter) const {
|
|
RTC_DCHECK(X2_noise_floor);
|
|
RTC_DCHECK(X2_noise_floor_counter);
|
|
|
|
const auto render_power = render_buffer.Spectrum(0);
|
|
RTC_DCHECK_EQ(X2_noise_floor->size(), render_power.size());
|
|
RTC_DCHECK_EQ(X2_noise_floor_counter->size(), render_power.size());
|
|
|
|
// Estimate the stationary noise power in a minimum statistics manner.
|
|
for (size_t k = 0; k < render_power.size(); ++k) {
|
|
// Decrease rapidly.
|
|
if (render_power[k] < (*X2_noise_floor)[k]) {
|
|
(*X2_noise_floor)[k] = render_power[k];
|
|
(*X2_noise_floor_counter)[k] = 0;
|
|
} else {
|
|
// Increase in a delayed, leaky manner.
|
|
if ((*X2_noise_floor_counter)[k] >=
|
|
static_cast<int>(config_.echo_model.noise_floor_hold)) {
|
|
(*X2_noise_floor)[k] =
|
|
std::max((*X2_noise_floor)[k] * 1.1f,
|
|
config_.echo_model.min_noise_floor_power);
|
|
} else {
|
|
++(*X2_noise_floor_counter)[k];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace webrtc
|