mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-14 14:20:45 +01:00

The struct containing the config for AEC3 is removed from AudioProcessing::Config and is put in a new struct called EchoCanceller3Config. AEC3 should no longer be activated through AudioProcessing::ApplyConfig. Instead an EchoCanceller3Factory can be injected at AudioProcessing creation. Bug: webrtc:8346 Change-Id: I27e3592e675eec3632a60c45d9e0d12514c2c567 Reviewed-on: https://webrtc-review.googlesource.com/11420 Reviewed-by: Per Åhgren <peah@webrtc.org> Reviewed-by: Henrik Lundin <henrik.lundin@webrtc.org> Commit-Queue: Gustaf Ullberg <gustaf@webrtc.org> Cr-Commit-Position: refs/heads/master@{#20342}
244 lines
9.1 KiB
C++
244 lines
9.1 KiB
C++
/*
|
|
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/audio_processing/aec3/aec_state.h"
|
|
|
|
#include "modules/audio_processing/logging/apm_data_dumper.h"
|
|
#include "test/gtest.h"
|
|
|
|
namespace webrtc {
|
|
|
|
// Verify the general functionality of AecState
|
|
TEST(AecState, NormalUsage) {
|
|
ApmDataDumper data_dumper(42);
|
|
AecState state(EchoCanceller3Config{});
|
|
RenderBuffer render_buffer(Aec3Optimization::kNone, 3, 30,
|
|
std::vector<size_t>(1, 30));
|
|
std::array<float, kFftLengthBy2Plus1> E2_main = {};
|
|
std::array<float, kFftLengthBy2Plus1> Y2 = {};
|
|
std::vector<std::vector<float>> x(3, std::vector<float>(kBlockSize, 0.f));
|
|
EchoPathVariability echo_path_variability(false, false);
|
|
std::array<float, kBlockSize> s;
|
|
s.fill(100.f);
|
|
|
|
std::vector<std::array<float, kFftLengthBy2Plus1>>
|
|
converged_filter_frequency_response(10);
|
|
for (auto& v : converged_filter_frequency_response) {
|
|
v.fill(0.01f);
|
|
}
|
|
std::vector<std::array<float, kFftLengthBy2Plus1>>
|
|
diverged_filter_frequency_response = converged_filter_frequency_response;
|
|
converged_filter_frequency_response[2].fill(100.f);
|
|
converged_filter_frequency_response[2][0] = 1.f;
|
|
|
|
std::array<float, kAdaptiveFilterTimeDomainLength> impulse_response;
|
|
impulse_response.fill(0.f);
|
|
|
|
// Verify that linear AEC usability is false when the filter is diverged and
|
|
// there is no external delay reported.
|
|
state.Update(diverged_filter_frequency_response, impulse_response, true,
|
|
rtc::Optional<size_t>(), render_buffer, E2_main, Y2, x[0], s,
|
|
false);
|
|
EXPECT_FALSE(state.UsableLinearEstimate());
|
|
|
|
// Verify that linear AEC usability is true when the filter is converged
|
|
std::fill(x[0].begin(), x[0].end(), 101.f);
|
|
for (int k = 0; k < 3000; ++k) {
|
|
state.Update(converged_filter_frequency_response, impulse_response, true,
|
|
rtc::Optional<size_t>(2), render_buffer, E2_main, Y2, x[0], s,
|
|
false);
|
|
}
|
|
EXPECT_TRUE(state.UsableLinearEstimate());
|
|
|
|
// Verify that linear AEC usability becomes false after an echo path change is
|
|
// reported
|
|
state.HandleEchoPathChange(EchoPathVariability(true, false));
|
|
state.Update(converged_filter_frequency_response, impulse_response, true,
|
|
rtc::Optional<size_t>(2), render_buffer, E2_main, Y2, x[0], s,
|
|
false);
|
|
EXPECT_FALSE(state.UsableLinearEstimate());
|
|
|
|
// Verify that the active render detection works as intended.
|
|
std::fill(x[0].begin(), x[0].end(), 101.f);
|
|
state.HandleEchoPathChange(EchoPathVariability(true, true));
|
|
state.Update(converged_filter_frequency_response, impulse_response, true,
|
|
rtc::Optional<size_t>(2), render_buffer, E2_main, Y2, x[0], s,
|
|
false);
|
|
EXPECT_FALSE(state.ActiveRender());
|
|
|
|
for (int k = 0; k < 1000; ++k) {
|
|
state.Update(converged_filter_frequency_response, impulse_response, true,
|
|
rtc::Optional<size_t>(2), render_buffer, E2_main, Y2, x[0], s,
|
|
false);
|
|
}
|
|
EXPECT_TRUE(state.ActiveRender());
|
|
|
|
// Verify that echo leakage is properly reported.
|
|
state.Update(converged_filter_frequency_response, impulse_response, true,
|
|
rtc::Optional<size_t>(2), render_buffer, E2_main, Y2, x[0], s,
|
|
false);
|
|
EXPECT_FALSE(state.EchoLeakageDetected());
|
|
|
|
state.Update(converged_filter_frequency_response, impulse_response, true,
|
|
rtc::Optional<size_t>(2), render_buffer, E2_main, Y2, x[0], s,
|
|
true);
|
|
EXPECT_TRUE(state.EchoLeakageDetected());
|
|
|
|
// Verify that the ERL is properly estimated
|
|
for (auto& x_k : x) {
|
|
x_k = std::vector<float>(kBlockSize, 0.f);
|
|
}
|
|
|
|
x[0][0] = 5000.f;
|
|
for (size_t k = 0; k < render_buffer.Buffer().size(); ++k) {
|
|
render_buffer.Insert(x);
|
|
}
|
|
|
|
Y2.fill(10.f * 10000.f * 10000.f);
|
|
for (size_t k = 0; k < 1000; ++k) {
|
|
state.Update(converged_filter_frequency_response, impulse_response, true,
|
|
rtc::Optional<size_t>(2), render_buffer, E2_main, Y2, x[0], s,
|
|
false);
|
|
}
|
|
|
|
ASSERT_TRUE(state.UsableLinearEstimate());
|
|
const std::array<float, kFftLengthBy2Plus1>& erl = state.Erl();
|
|
EXPECT_EQ(erl[0], erl[1]);
|
|
for (size_t k = 1; k < erl.size() - 1; ++k) {
|
|
EXPECT_NEAR(k % 2 == 0 ? 10.f : 1000.f, erl[k], 0.1);
|
|
}
|
|
EXPECT_EQ(erl[erl.size() - 2], erl[erl.size() - 1]);
|
|
|
|
// Verify that the ERLE is properly estimated
|
|
E2_main.fill(1.f * 10000.f * 10000.f);
|
|
Y2.fill(10.f * E2_main[0]);
|
|
for (size_t k = 0; k < 1000; ++k) {
|
|
state.Update(converged_filter_frequency_response, impulse_response, true,
|
|
rtc::Optional<size_t>(2), render_buffer, E2_main, Y2, x[0], s,
|
|
false);
|
|
}
|
|
ASSERT_TRUE(state.UsableLinearEstimate());
|
|
{
|
|
const auto& erle = state.Erle();
|
|
EXPECT_EQ(erle[0], erle[1]);
|
|
constexpr size_t kLowFrequencyLimit = 32;
|
|
for (size_t k = 1; k < kLowFrequencyLimit; ++k) {
|
|
EXPECT_NEAR(k % 2 == 0 ? 8.f : 1.f, erle[k], 0.1);
|
|
}
|
|
for (size_t k = kLowFrequencyLimit; k < erle.size() - 1; ++k) {
|
|
EXPECT_NEAR(k % 2 == 0 ? 1.5f : 1.f, erle[k], 0.1);
|
|
}
|
|
EXPECT_EQ(erle[erle.size() - 2], erle[erle.size() - 1]);
|
|
}
|
|
|
|
E2_main.fill(1.f * 10000.f * 10000.f);
|
|
Y2.fill(5.f * E2_main[0]);
|
|
for (size_t k = 0; k < 1000; ++k) {
|
|
state.Update(converged_filter_frequency_response, impulse_response, true,
|
|
rtc::Optional<size_t>(2), render_buffer, E2_main, Y2, x[0], s,
|
|
false);
|
|
}
|
|
|
|
ASSERT_TRUE(state.UsableLinearEstimate());
|
|
{
|
|
const auto& erle = state.Erle();
|
|
EXPECT_EQ(erle[0], erle[1]);
|
|
constexpr size_t kLowFrequencyLimit = 32;
|
|
for (size_t k = 1; k < kLowFrequencyLimit; ++k) {
|
|
EXPECT_NEAR(k % 2 == 0 ? 5.f : 1.f, erle[k], 0.1);
|
|
}
|
|
for (size_t k = kLowFrequencyLimit; k < erle.size() - 1; ++k) {
|
|
EXPECT_NEAR(k % 2 == 0 ? 1.5f : 1.f, erle[k], 0.1);
|
|
}
|
|
EXPECT_EQ(erle[erle.size() - 2], erle[erle.size() - 1]);
|
|
}
|
|
}
|
|
|
|
// Verifies the delay for a converged filter is correctly identified.
|
|
TEST(AecState, ConvergedFilterDelay) {
|
|
constexpr int kFilterLength = 10;
|
|
AecState state(EchoCanceller3Config{});
|
|
RenderBuffer render_buffer(Aec3Optimization::kNone, 3, 30,
|
|
std::vector<size_t>(1, 30));
|
|
std::array<float, kFftLengthBy2Plus1> E2_main;
|
|
std::array<float, kFftLengthBy2Plus1> Y2;
|
|
std::array<float, kBlockSize> x;
|
|
EchoPathVariability echo_path_variability(false, false);
|
|
std::array<float, kBlockSize> s;
|
|
s.fill(100.f);
|
|
x.fill(0.f);
|
|
|
|
std::vector<std::array<float, kFftLengthBy2Plus1>> frequency_response(
|
|
kFilterLength);
|
|
|
|
std::array<float, kAdaptiveFilterTimeDomainLength> impulse_response;
|
|
impulse_response.fill(0.f);
|
|
|
|
// Verify that the filter delay for a converged filter is properly identified.
|
|
for (int k = 0; k < kFilterLength; ++k) {
|
|
for (auto& v : frequency_response) {
|
|
v.fill(0.01f);
|
|
}
|
|
frequency_response[k].fill(100.f);
|
|
frequency_response[k][0] = 0.f;
|
|
state.HandleEchoPathChange(echo_path_variability);
|
|
state.Update(frequency_response, impulse_response, true,
|
|
rtc::Optional<size_t>(), render_buffer, E2_main, Y2, x, s,
|
|
false);
|
|
EXPECT_TRUE(k == (kFilterLength - 1) || state.FilterDelay());
|
|
if (k != (kFilterLength - 1)) {
|
|
EXPECT_EQ(k, state.FilterDelay());
|
|
}
|
|
}
|
|
}
|
|
|
|
// Verify that the externally reported delay is properly reported and converted.
|
|
TEST(AecState, ExternalDelay) {
|
|
AecState state(EchoCanceller3Config{});
|
|
std::array<float, kFftLengthBy2Plus1> E2_main;
|
|
std::array<float, kFftLengthBy2Plus1> E2_shadow;
|
|
std::array<float, kFftLengthBy2Plus1> Y2;
|
|
std::array<float, kBlockSize> x;
|
|
std::array<float, kBlockSize> s;
|
|
s.fill(100.f);
|
|
E2_main.fill(0.f);
|
|
E2_shadow.fill(0.f);
|
|
Y2.fill(0.f);
|
|
x.fill(0.f);
|
|
RenderBuffer render_buffer(Aec3Optimization::kNone, 3, 30,
|
|
std::vector<size_t>(1, 30));
|
|
std::vector<std::array<float, kFftLengthBy2Plus1>> frequency_response(
|
|
kAdaptiveFilterLength);
|
|
for (auto& v : frequency_response) {
|
|
v.fill(0.01f);
|
|
}
|
|
|
|
std::array<float, kAdaptiveFilterTimeDomainLength> impulse_response;
|
|
impulse_response.fill(0.f);
|
|
|
|
for (size_t k = 0; k < frequency_response.size() - 1; ++k) {
|
|
state.HandleEchoPathChange(EchoPathVariability(false, false));
|
|
state.Update(frequency_response, impulse_response, true,
|
|
rtc::Optional<size_t>(k * kBlockSize + 5), render_buffer,
|
|
E2_main, Y2, x, s, false);
|
|
EXPECT_TRUE(state.ExternalDelay());
|
|
EXPECT_EQ(k, state.ExternalDelay());
|
|
}
|
|
|
|
// Verify that the externally reported delay is properly unset when it is no
|
|
// longer present.
|
|
state.HandleEchoPathChange(EchoPathVariability(false, false));
|
|
state.Update(frequency_response, impulse_response, true,
|
|
rtc::Optional<size_t>(), render_buffer, E2_main, Y2, x, s,
|
|
false);
|
|
EXPECT_FALSE(state.ExternalDelay());
|
|
}
|
|
|
|
} // namespace webrtc
|