mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-14 14:20:45 +01:00

For now use doubles as units in api/units have insufficient precision for jitter estimation. Bug: webrtc:14381 Change-Id: I5a691b6a404b734a5bef11d677b72040bc02ff0f Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/272367 Reviewed-by: Rasmus Brandt <brandtr@webrtc.org> Commit-Queue: Philip Eliasson <philipel@webrtc.org> Cr-Commit-Position: refs/heads/main@{#37841}
317 lines
11 KiB
C++
317 lines
11 KiB
C++
/*
|
|
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/video_coding/timing/jitter_estimator.h"
|
|
|
|
#include <math.h>
|
|
#include <string.h>
|
|
|
|
#include <algorithm>
|
|
#include <cstdint>
|
|
|
|
#include "absl/types/optional.h"
|
|
#include "api/field_trials_view.h"
|
|
#include "api/units/data_size.h"
|
|
#include "api/units/frequency.h"
|
|
#include "api/units/time_delta.h"
|
|
#include "api/units/timestamp.h"
|
|
#include "modules/video_coding/timing/rtt_filter.h"
|
|
#include "rtc_base/numerics/safe_conversions.h"
|
|
#include "system_wrappers/include/clock.h"
|
|
|
|
namespace webrtc {
|
|
namespace {
|
|
static constexpr uint32_t kStartupDelaySamples = 30;
|
|
static constexpr int64_t kFsAccuStartupSamples = 5;
|
|
static constexpr Frequency kMaxFramerateEstimate = Frequency::Hertz(200);
|
|
static constexpr TimeDelta kNackCountTimeout = TimeDelta::Seconds(60);
|
|
static constexpr double kDefaultMaxTimestampDeviationInSigmas = 3.5;
|
|
static constexpr double kDefaultAvgAndMaxFrameSize = 500;
|
|
|
|
constexpr double kPhi = 0.97;
|
|
constexpr double kPsi = 0.9999;
|
|
constexpr uint32_t kAlphaCountMax = 400;
|
|
constexpr uint32_t kNackLimit = 3;
|
|
constexpr int32_t kNumStdDevDelayOutlier = 15;
|
|
constexpr int32_t kNumStdDevFrameSizeOutlier = 3;
|
|
// ~Less than 1% chance (look up in normal distribution table)...
|
|
constexpr double kNoiseStdDevs = 2.33;
|
|
// ...of getting 30 ms freezes
|
|
constexpr double kNoiseStdDevOffset = 30.0;
|
|
|
|
} // namespace
|
|
|
|
JitterEstimator::JitterEstimator(Clock* clock,
|
|
const FieldTrialsView& field_trials)
|
|
: fps_counter_(30), // TODO(sprang): Use an estimator with limit based on
|
|
// time, rather than number of samples.
|
|
clock_(clock) {
|
|
Reset();
|
|
}
|
|
|
|
JitterEstimator::~JitterEstimator() = default;
|
|
|
|
// Resets the JitterEstimate.
|
|
void JitterEstimator::Reset() {
|
|
var_noise_ = 4.0;
|
|
|
|
avg_frame_size_bytes_ = kDefaultAvgAndMaxFrameSize;
|
|
max_frame_size_bytes_ = kDefaultAvgAndMaxFrameSize;
|
|
var_frame_size_ = 100;
|
|
last_update_time_ = absl::nullopt;
|
|
prev_estimate_ = absl::nullopt;
|
|
prev_frame_size_ = absl::nullopt;
|
|
avg_noise_ = 0.0;
|
|
alpha_count_ = 1;
|
|
filter_jitter_estimate_ = TimeDelta::Zero();
|
|
latest_nack_ = Timestamp::Zero();
|
|
nack_count_ = 0;
|
|
frame_size_sum_bytes_ = 0;
|
|
frame_size_count_ = 0;
|
|
startup_count_ = 0;
|
|
rtt_filter_.Reset();
|
|
fps_counter_.Reset();
|
|
|
|
kalman_filter_ = FrameDelayDeltaKalmanFilter();
|
|
}
|
|
|
|
// Updates the estimates with the new measurements.
|
|
void JitterEstimator::UpdateEstimate(TimeDelta frame_delay,
|
|
DataSize frame_size) {
|
|
if (frame_size.IsZero()) {
|
|
return;
|
|
}
|
|
// Can't use DataSize since this can be negative.
|
|
double delta_frame_bytes =
|
|
frame_size.bytes() - prev_frame_size_.value_or(DataSize::Zero()).bytes();
|
|
if (frame_size_count_ < kFsAccuStartupSamples) {
|
|
frame_size_sum_bytes_ += frame_size.bytes();
|
|
frame_size_count_++;
|
|
} else if (frame_size_count_ == kFsAccuStartupSamples) {
|
|
// Give the frame size filter.
|
|
avg_frame_size_bytes_ =
|
|
frame_size_sum_bytes_ / static_cast<double>(frame_size_count_);
|
|
frame_size_count_++;
|
|
}
|
|
|
|
double avg_frame_size_bytes =
|
|
kPhi * avg_frame_size_bytes_ + (1 - kPhi) * frame_size.bytes();
|
|
double deviation_size_bytes = 2 * sqrt(var_frame_size_);
|
|
if (frame_size.bytes() < avg_frame_size_bytes_ + deviation_size_bytes) {
|
|
// Only update the average frame size if this sample wasn't a key frame.
|
|
avg_frame_size_bytes_ = avg_frame_size_bytes;
|
|
}
|
|
|
|
double delta_bytes = frame_size.bytes() - avg_frame_size_bytes;
|
|
var_frame_size_ = std::max(
|
|
kPhi * var_frame_size_ + (1 - kPhi) * (delta_bytes * delta_bytes), 1.0);
|
|
|
|
// Update max_frame_size_bytes_ estimate.
|
|
max_frame_size_bytes_ =
|
|
std::max<double>(kPsi * max_frame_size_bytes_, frame_size.bytes());
|
|
|
|
if (!prev_frame_size_) {
|
|
prev_frame_size_ = frame_size;
|
|
return;
|
|
}
|
|
prev_frame_size_ = frame_size;
|
|
|
|
// Cap frame_delay based on the current time deviation noise.
|
|
TimeDelta max_time_deviation = TimeDelta::Millis(
|
|
kDefaultMaxTimestampDeviationInSigmas * sqrt(var_noise_) + 0.5);
|
|
frame_delay.Clamp(-max_time_deviation, max_time_deviation);
|
|
|
|
// Only update the Kalman filter if the sample is not considered an extreme
|
|
// outlier. Even if it is an extreme outlier from a delay point of view, if
|
|
// the frame size also is large the deviation is probably due to an incorrect
|
|
// line slope.
|
|
double deviation =
|
|
frame_delay.ms() -
|
|
kalman_filter_.GetFrameDelayVariationEstimateTotal(delta_frame_bytes);
|
|
|
|
if (fabs(deviation) < kNumStdDevDelayOutlier * sqrt(var_noise_) ||
|
|
frame_size.bytes() > avg_frame_size_bytes_ + kNumStdDevFrameSizeOutlier *
|
|
sqrt(var_frame_size_)) {
|
|
// Update the variance of the deviation from the line given by the Kalman
|
|
// filter.
|
|
EstimateRandomJitter(deviation);
|
|
// Prevent updating with frames which have been congested by a large frame,
|
|
// and therefore arrives almost at the same time as that frame.
|
|
// This can occur when we receive a large frame (key frame) which has been
|
|
// delayed. The next frame is of normal size (delta frame), and thus deltaFS
|
|
// will be << 0. This removes all frame samples which arrives after a key
|
|
// frame.
|
|
if (delta_frame_bytes > -0.25 * max_frame_size_bytes_) {
|
|
// Update the Kalman filter with the new data
|
|
kalman_filter_.PredictAndUpdate(frame_delay.ms(), delta_frame_bytes,
|
|
max_frame_size_bytes_, var_noise_);
|
|
}
|
|
} else {
|
|
int nStdDev =
|
|
(deviation >= 0) ? kNumStdDevDelayOutlier : -kNumStdDevDelayOutlier;
|
|
EstimateRandomJitter(nStdDev * sqrt(var_noise_));
|
|
}
|
|
// Post process the total estimated jitter
|
|
if (startup_count_ >= kStartupDelaySamples) {
|
|
PostProcessEstimate();
|
|
} else {
|
|
startup_count_++;
|
|
}
|
|
}
|
|
|
|
// Updates the nack/packet ratio.
|
|
void JitterEstimator::FrameNacked() {
|
|
if (nack_count_ < kNackLimit) {
|
|
nack_count_++;
|
|
}
|
|
latest_nack_ = clock_->CurrentTime();
|
|
}
|
|
|
|
// Estimates the random jitter by calculating the variance of the sample
|
|
// distance from the line given by theta.
|
|
void JitterEstimator::EstimateRandomJitter(double d_dT) {
|
|
Timestamp now = clock_->CurrentTime();
|
|
if (last_update_time_.has_value()) {
|
|
fps_counter_.AddSample((now - *last_update_time_).us());
|
|
}
|
|
last_update_time_ = now;
|
|
|
|
if (alpha_count_ == 0) {
|
|
RTC_DCHECK_NOTREACHED();
|
|
return;
|
|
}
|
|
double alpha =
|
|
static_cast<double>(alpha_count_ - 1) / static_cast<double>(alpha_count_);
|
|
alpha_count_++;
|
|
if (alpha_count_ > kAlphaCountMax)
|
|
alpha_count_ = kAlphaCountMax;
|
|
|
|
// In order to avoid a low frame rate stream to react slower to changes,
|
|
// scale the alpha weight relative a 30 fps stream.
|
|
Frequency fps = GetFrameRate();
|
|
if (fps > Frequency::Zero()) {
|
|
constexpr Frequency k30Fps = Frequency::Hertz(30);
|
|
double rate_scale = k30Fps / fps;
|
|
// At startup, there can be a lot of noise in the fps estimate.
|
|
// Interpolate rate_scale linearly, from 1.0 at sample #1, to 30.0 / fps
|
|
// at sample #kStartupDelaySamples.
|
|
if (alpha_count_ < kStartupDelaySamples) {
|
|
rate_scale =
|
|
(alpha_count_ * rate_scale + (kStartupDelaySamples - alpha_count_)) /
|
|
kStartupDelaySamples;
|
|
}
|
|
alpha = pow(alpha, rate_scale);
|
|
}
|
|
|
|
double avgNoise = alpha * avg_noise_ + (1 - alpha) * d_dT;
|
|
double varNoise = alpha * var_noise_ +
|
|
(1 - alpha) * (d_dT - avg_noise_) * (d_dT - avg_noise_);
|
|
avg_noise_ = avgNoise;
|
|
var_noise_ = varNoise;
|
|
if (var_noise_ < 1.0) {
|
|
// The variance should never be zero, since we might get stuck and consider
|
|
// all samples as outliers.
|
|
var_noise_ = 1.0;
|
|
}
|
|
}
|
|
|
|
double JitterEstimator::NoiseThreshold() const {
|
|
double noiseThreshold = kNoiseStdDevs * sqrt(var_noise_) - kNoiseStdDevOffset;
|
|
if (noiseThreshold < 1.0) {
|
|
noiseThreshold = 1.0;
|
|
}
|
|
return noiseThreshold;
|
|
}
|
|
|
|
// Calculates the current jitter estimate from the filtered estimates.
|
|
TimeDelta JitterEstimator::CalculateEstimate() {
|
|
double retMs = kalman_filter_.GetFrameDelayVariationEstimateSizeBased(
|
|
max_frame_size_bytes_ - avg_frame_size_bytes_) +
|
|
NoiseThreshold();
|
|
|
|
TimeDelta ret = TimeDelta::Millis(retMs);
|
|
|
|
constexpr TimeDelta kMinEstimate = TimeDelta::Millis(1);
|
|
constexpr TimeDelta kMaxEstimate = TimeDelta::Seconds(10);
|
|
// A very low estimate (or negative) is neglected.
|
|
if (ret < kMinEstimate) {
|
|
ret = prev_estimate_.value_or(kMinEstimate);
|
|
// Sanity check to make sure that no other method has set `prev_estimate_`
|
|
// to a value lower than `kMinEstimate`.
|
|
RTC_DCHECK_GE(ret, kMinEstimate);
|
|
} else if (ret > kMaxEstimate) { // Sanity
|
|
ret = kMaxEstimate;
|
|
}
|
|
prev_estimate_ = ret;
|
|
return ret;
|
|
}
|
|
|
|
void JitterEstimator::PostProcessEstimate() {
|
|
filter_jitter_estimate_ = CalculateEstimate();
|
|
}
|
|
|
|
void JitterEstimator::UpdateRtt(TimeDelta rtt) {
|
|
rtt_filter_.Update(rtt);
|
|
}
|
|
|
|
// Returns the current filtered estimate if available,
|
|
// otherwise tries to calculate an estimate.
|
|
TimeDelta JitterEstimator::GetJitterEstimate(
|
|
double rtt_multiplier,
|
|
absl::optional<TimeDelta> rtt_mult_add_cap) {
|
|
TimeDelta jitter = CalculateEstimate() + OPERATING_SYSTEM_JITTER;
|
|
Timestamp now = clock_->CurrentTime();
|
|
|
|
if (now - latest_nack_ > kNackCountTimeout)
|
|
nack_count_ = 0;
|
|
|
|
if (filter_jitter_estimate_ > jitter)
|
|
jitter = filter_jitter_estimate_;
|
|
if (nack_count_ >= kNackLimit) {
|
|
if (rtt_mult_add_cap.has_value()) {
|
|
jitter += std::min(rtt_filter_.Rtt() * rtt_multiplier,
|
|
rtt_mult_add_cap.value());
|
|
} else {
|
|
jitter += rtt_filter_.Rtt() * rtt_multiplier;
|
|
}
|
|
}
|
|
|
|
static const Frequency kJitterScaleLowThreshold = Frequency::Hertz(5);
|
|
static const Frequency kJitterScaleHighThreshold = Frequency::Hertz(10);
|
|
Frequency fps = GetFrameRate();
|
|
// Ignore jitter for very low fps streams.
|
|
if (fps < kJitterScaleLowThreshold) {
|
|
if (fps.IsZero()) {
|
|
return std::max(TimeDelta::Zero(), jitter);
|
|
}
|
|
return TimeDelta::Zero();
|
|
}
|
|
|
|
// Semi-low frame rate; scale by factor linearly interpolated from 0.0 at
|
|
// kJitterScaleLowThreshold to 1.0 at kJitterScaleHighThreshold.
|
|
if (fps < kJitterScaleHighThreshold) {
|
|
jitter = (1.0 / (kJitterScaleHighThreshold - kJitterScaleLowThreshold)) *
|
|
(fps - kJitterScaleLowThreshold) * jitter;
|
|
}
|
|
|
|
return std::max(TimeDelta::Zero(), jitter);
|
|
}
|
|
|
|
Frequency JitterEstimator::GetFrameRate() const {
|
|
TimeDelta mean_frame_period = TimeDelta::Micros(fps_counter_.ComputeMean());
|
|
if (mean_frame_period <= TimeDelta::Zero())
|
|
return Frequency::Zero();
|
|
|
|
Frequency fps = 1 / mean_frame_period;
|
|
// Sanity check.
|
|
RTC_DCHECK_GE(fps, Frequency::Zero());
|
|
return std::min(fps, kMaxFramerateEstimate);
|
|
}
|
|
} // namespace webrtc
|