mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-14 06:10:40 +01:00

Bug: webrtc:10480 Change-Id: I6c49e728ed61647b098c20a6d8a856005066ab75 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/200840 Reviewed-by: Alessio Bazzica <alessiob@webrtc.org> Reviewed-by: Sam Zackrisson <saza@webrtc.org> Commit-Queue: Alessio Bazzica <alessiob@webrtc.org> Cr-Commit-Position: refs/heads/master@{#32930}
111 lines
4.4 KiB
C++
111 lines
4.4 KiB
C++
/*
|
|
* Copyright (c) 2020 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/audio_processing/agc2/rnn_vad/rnn_fc.h"
|
|
|
|
#include <array>
|
|
#include <vector>
|
|
|
|
#include "api/array_view.h"
|
|
#include "modules/audio_processing/agc2/cpu_features.h"
|
|
#include "modules/audio_processing/agc2/rnn_vad/test_utils.h"
|
|
#include "modules/audio_processing/test/performance_timer.h"
|
|
#include "rtc_base/logging.h"
|
|
#include "rtc_base/system/arch.h"
|
|
#include "test/gtest.h"
|
|
#include "third_party/rnnoise/src/rnn_vad_weights.h"
|
|
|
|
namespace webrtc {
|
|
namespace rnn_vad {
|
|
namespace {
|
|
|
|
using ::rnnoise::kInputDenseBias;
|
|
using ::rnnoise::kInputDenseWeights;
|
|
using ::rnnoise::kInputLayerInputSize;
|
|
using ::rnnoise::kInputLayerOutputSize;
|
|
|
|
// Fully connected layer test data.
|
|
constexpr std::array<float, 42> kFullyConnectedInputVector = {
|
|
-1.00131f, -0.627069f, -7.81097f, 7.86285f, -2.87145f, 3.32365f,
|
|
-0.653161f, 0.529839f, -0.425307f, 0.25583f, 0.235094f, 0.230527f,
|
|
-0.144687f, 0.182785f, 0.57102f, 0.125039f, 0.479482f, -0.0255439f,
|
|
-0.0073141f, -0.147346f, -0.217106f, -0.0846906f, -8.34943f, 3.09065f,
|
|
1.42628f, -0.85235f, -0.220207f, -0.811163f, 2.09032f, -2.01425f,
|
|
-0.690268f, -0.925327f, -0.541354f, 0.58455f, -0.606726f, -0.0372358f,
|
|
0.565991f, 0.435854f, 0.420812f, 0.162198f, -2.13f, 10.0089f};
|
|
constexpr std::array<float, 24> kFullyConnectedExpectedOutput = {
|
|
-0.623293f, -0.988299f, 0.999378f, 0.967168f, 0.103087f, -0.978545f,
|
|
-0.856347f, 0.346675f, 1.f, -0.717442f, -0.544176f, 0.960363f,
|
|
0.983443f, 0.999991f, -0.824335f, 0.984742f, 0.990208f, 0.938179f,
|
|
0.875092f, 0.999846f, 0.997707f, -0.999382f, 0.973153f, -0.966605f};
|
|
|
|
class RnnFcParametrization
|
|
: public ::testing::TestWithParam<AvailableCpuFeatures> {};
|
|
|
|
// Checks that the output of a fully connected layer is within tolerance given
|
|
// test input data.
|
|
TEST_P(RnnFcParametrization, CheckFullyConnectedLayerOutput) {
|
|
FullyConnectedLayer fc(kInputLayerInputSize, kInputLayerOutputSize,
|
|
kInputDenseBias, kInputDenseWeights,
|
|
ActivationFunction::kTansigApproximated,
|
|
/*cpu_features=*/GetParam(),
|
|
/*layer_name=*/"FC");
|
|
fc.ComputeOutput(kFullyConnectedInputVector);
|
|
ExpectNearAbsolute(kFullyConnectedExpectedOutput, fc, 1e-5f);
|
|
}
|
|
|
|
TEST_P(RnnFcParametrization, DISABLED_BenchmarkFullyConnectedLayer) {
|
|
const AvailableCpuFeatures cpu_features = GetParam();
|
|
FullyConnectedLayer fc(kInputLayerInputSize, kInputLayerOutputSize,
|
|
kInputDenseBias, kInputDenseWeights,
|
|
ActivationFunction::kTansigApproximated, cpu_features,
|
|
/*layer_name=*/"FC");
|
|
|
|
constexpr int kNumTests = 10000;
|
|
::webrtc::test::PerformanceTimer perf_timer(kNumTests);
|
|
for (int k = 0; k < kNumTests; ++k) {
|
|
perf_timer.StartTimer();
|
|
fc.ComputeOutput(kFullyConnectedInputVector);
|
|
perf_timer.StopTimer();
|
|
}
|
|
RTC_LOG(LS_INFO) << "CPU features: " << cpu_features.ToString() << " | "
|
|
<< (perf_timer.GetDurationAverage() / 1000) << " +/- "
|
|
<< (perf_timer.GetDurationStandardDeviation() / 1000)
|
|
<< " ms";
|
|
}
|
|
|
|
// Finds the relevant CPU features combinations to test.
|
|
std::vector<AvailableCpuFeatures> GetCpuFeaturesToTest() {
|
|
std::vector<AvailableCpuFeatures> v;
|
|
v.push_back(NoAvailableCpuFeatures());
|
|
AvailableCpuFeatures available = GetAvailableCpuFeatures();
|
|
if (available.sse2) {
|
|
v.push_back({/*sse2=*/true, /*avx2=*/false, /*neon=*/false});
|
|
}
|
|
if (available.avx2) {
|
|
v.push_back({/*sse2=*/false, /*avx2=*/true, /*neon=*/false});
|
|
}
|
|
if (available.neon) {
|
|
v.push_back({/*sse2=*/false, /*avx2=*/false, /*neon=*/true});
|
|
}
|
|
return v;
|
|
}
|
|
|
|
INSTANTIATE_TEST_SUITE_P(
|
|
RnnVadTest,
|
|
RnnFcParametrization,
|
|
::testing::ValuesIn(GetCpuFeaturesToTest()),
|
|
[](const ::testing::TestParamInfo<AvailableCpuFeatures>& info) {
|
|
return info.param.ToString();
|
|
});
|
|
|
|
} // namespace
|
|
} // namespace rnn_vad
|
|
} // namespace webrtc
|