mirror of
https://github.com/mollyim/webrtc.git
synced 2025-05-14 06:10:40 +01:00

Using `VectorMath::DotProduct()` in GatedRecurrentLayer to reuse existing SIMD optimizations. Results: - When SSE2/AVX2 is avilable, the GRU layer takes 40% of the unoptimized code - The realtime factor for the VAD improved as follows - SSE2: from 570x to 630x - AVX2: from 610x to 680x This CL also improved the GRU layer benchmark by (i) benchmarking a GRU layer havibng the same size of that used in the VAD and (ii) by prefetching a long input sequence. Bug: webrtc:10480 Change-Id: I9716b15661e4c6b81592b4cf7c172d90e41b5223 Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/195545 Reviewed-by: Per Åhgren <peah@webrtc.org> Commit-Queue: Alessio Bazzica <alessiob@webrtc.org> Cr-Commit-Position: refs/heads/master@{#32803}
70 lines
2.5 KiB
C++
70 lines
2.5 KiB
C++
/*
|
|
* Copyright (c) 2020 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#ifndef MODULES_AUDIO_PROCESSING_AGC2_RNN_VAD_RNN_GRU_H_
|
|
#define MODULES_AUDIO_PROCESSING_AGC2_RNN_VAD_RNN_GRU_H_
|
|
|
|
#include <array>
|
|
#include <vector>
|
|
|
|
#include "absl/strings/string_view.h"
|
|
#include "api/array_view.h"
|
|
#include "modules/audio_processing/agc2/cpu_features.h"
|
|
#include "modules/audio_processing/agc2/rnn_vad/vector_math.h"
|
|
|
|
namespace webrtc {
|
|
namespace rnn_vad {
|
|
|
|
// Maximum number of units for a GRU layer.
|
|
constexpr int kGruLayerMaxUnits = 24;
|
|
|
|
// Recurrent layer with gated recurrent units (GRUs) with sigmoid and ReLU as
|
|
// activation functions for the update/reset and output gates respectively.
|
|
class GatedRecurrentLayer {
|
|
public:
|
|
// Ctor. `output_size` cannot be greater than `kGruLayerMaxUnits`.
|
|
GatedRecurrentLayer(int input_size,
|
|
int output_size,
|
|
rtc::ArrayView<const int8_t> bias,
|
|
rtc::ArrayView<const int8_t> weights,
|
|
rtc::ArrayView<const int8_t> recurrent_weights,
|
|
const AvailableCpuFeatures& cpu_features,
|
|
absl::string_view layer_name);
|
|
GatedRecurrentLayer(const GatedRecurrentLayer&) = delete;
|
|
GatedRecurrentLayer& operator=(const GatedRecurrentLayer&) = delete;
|
|
~GatedRecurrentLayer();
|
|
|
|
// Returns the size of the input vector.
|
|
int input_size() const { return input_size_; }
|
|
// Returns the pointer to the first element of the output buffer.
|
|
const float* data() const { return state_.data(); }
|
|
// Returns the size of the output buffer.
|
|
int size() const { return output_size_; }
|
|
|
|
// Resets the GRU state.
|
|
void Reset();
|
|
// Computes the recurrent layer output and updates the status.
|
|
void ComputeOutput(rtc::ArrayView<const float> input);
|
|
|
|
private:
|
|
const int input_size_;
|
|
const int output_size_;
|
|
const std::vector<float> bias_;
|
|
const std::vector<float> weights_;
|
|
const std::vector<float> recurrent_weights_;
|
|
const VectorMath vector_math_;
|
|
// Over-allocated array with size equal to `output_size_`.
|
|
std::array<float, kGruLayerMaxUnits> state_;
|
|
};
|
|
|
|
} // namespace rnn_vad
|
|
} // namespace webrtc
|
|
|
|
#endif // MODULES_AUDIO_PROCESSING_AGC2_RNN_VAD_RNN_GRU_H_
|